Towards Hybrid Energy-Efficient Power Management in Wireless Sensor Networks
<p>Parameters Involved within a Low-Power Sensor Node.</p> "> Figure 2
<p>Power Management Taxonomy at CPU Level.</p> "> Figure 3
<p>HEEPS Phases Integration.</p> "> Figure 4
<p>Backend Design of HEEPS Model.</p> "> Figure 5
<p>Flowchart of Execution of HEEPS.</p> "> Figure 6
<p>Tasks Scheduling Scheme of HEEPS.</p> "> Figure 7
<p>Gantt Diagrams of Simulation Results.</p> "> Figure 8
<p>Effect of Reducing Frequency on Consumption.</p> "> Figure 9
<p>Evolution of the Number of Active Processors.</p> "> Figure 10
<p>Influence of the AET and Task Number on Energy.</p> ">
Abstract
:1. Introduction
- A novel WSN energy saving model, called HEEPS, that combines power management and scheduling techniques is developed to schedule real-time tasks. The particularity of HEEPS is its ability to provide a customized energy management algorithm, among time-out 2 DPM and intertask DVFS driven by the GEDF (Generalised Earliest Deadline First) scheduler, to meet the needs of the application. The implemented power model relies on power states as a methodology for power consumption modeling.
- A comprehensive review of a variety of saving techniques for WSNs is provided. Each technique target to improve the efficiency of a sensor node such as the energy harvesting and clock gating. Moreover, a discussion to demonstrate the efficiency of the proposed algorithm and to compare it with similar works in the literature is carried out.
- Specification and verification of time constraints through the GEDF scheduler are given combining two conditions of scheduling to avoid the Dhall effect and non-exploited resources:
- (a)
- Condition of Goossens, Funk, and Baruah
- (b)
- Condition of Srinivasan and Belkadi
- Evaluation of the influences of the number of tasks, number of CPU, Worst-Case Execution Time (WCET), Average Execution Time (AET), workload, etc., on saving energy by HEEPS through the STORM simulator. Detailed performance analysis and experimental results are provided showing more energy compared to other existing methods.
2. Survey of Energy Optimization Approaches in WSNs
2.1. Network Layer
2.2. Transport Layer
2.3. Software Level
2.4. Processing Layer
2.5. System-Level Techniques
2.5.1. Undervolting
2.5.2. Dynamic Voltage Scaling (DVS) Techniques
2.5.3. Dynamic Voltage and Frequency Scaling (DVFS)
2.5.4. Dynamic Power Management (DPM)
2.5.5. Off-Line Techniques
2.6. Energy Harvesting Solutions
2.7. Comparison of Energy Saving Techniques
3. HEEPS: A Hybrid Energy-Efficient Power Manager Scheduling
Algorithm 1: HEEPS Implementation |
4. Simulation Setup
- In the GFB rule, the total utilization ratio threshold is:
- The utilization rate of Srinivasan and Belkadi for each task isTasks are scheduled on m processors as long as the total utilization is:As a result, we have and .
5. Performance Evaluation of HEEPS
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yar, H.; Imran, A.S.; Khan, Z.A.; Sajjad, M.; Kastrati, Z. Towards Smart Home Automation Using IoT-Enabled Edge-Computing Paradigm. Sensors 2021, 21, 4932. [Google Scholar] [CrossRef] [PubMed]
- Chéour, R.; Khriji, S.; Kanoun, O. Microcontrollers for IoT: Optimizations, Computing Paradigms, and Future Directions. In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–7. [Google Scholar]
- El Houssaini, D.; Khriji, S.; Besbes, K.; Kanoun, O. Wireless sensor networks in agricultural applications. In Energy Harvesting for Wireless Sensor Networks; De Gruyter Oldenbourg: Berlin, Germany, 2018; pp. 323–342. [Google Scholar]
- Kanoun, O.; Bradai, S.; Khriji, S.; Bouattour, G.; El Houssaini, D.; Ben Ammar, M.; Naifar, S.; Bouhamed, A.; Derbel, F.; Viehweger, C. Energy-Aware System Design for Autonomous Wireless Sensor Nodes: A Comprehensive Review. Sensors 2021, 21, 548. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gu, W.; Yuan, H. Research on IOT technology applied to intelligent agriculture. In Proceedings of the 5th International Conference on Electrical Engineering and Automatic Control; Springer: Berlin, Germany, 2016; pp. 1217–1224. [Google Scholar]
- Inga, E.; Inga, J.; Ortega, A. Novel Approach Sizing and Routing of Wireless Sensor Networks for Applications in Smart Cities. Sensors 2021, 21, 4692. [Google Scholar] [CrossRef] [PubMed]
- Gotz, M.; Khriji, S.; Chéour, R.; Arief, W.; Kanoun, O. Benchmarking based Investigation on Energy Efficiency of Low-Power Microcontrollers. IEEE Trans. Instrum. Meas. 2020, 69, 7505–7512. [Google Scholar] [CrossRef]
- Chéour, R.; Khriji, S.; Götz, M.; Abid, M.; Kanoun, O. Accurate Dynamic Voltage and Frequency Scaling Measurement for Low-Power Microcontrollors in Wireless Sensor Networks. Microelectron. J. 2020, 105, 104874. [Google Scholar] [CrossRef]
- Khriji, S.; El Houssaini, D.; Kammoun, I.; Kanoun, O. Energy-efficient techniques in wireless sensor networks. In Energy Harvesting for Wireless Sensor Networks: Technologies, Components and System Design; De Gruyter Oldenbourg: Berlin, Germany, 2018. [Google Scholar]
- Chéour, R.; Jmal, M.; Abid, M. New combined method for low energy consumption in Wireless Sensor Network applications. Simulation 2018, 94, 873–885. [Google Scholar] [CrossRef]
- Goossens, J. Scheduling of Offset Free Systems. Real-Time Sys. 2003, 24, 239–258. [Google Scholar] [CrossRef]
- Srinivasan, A.; Baruah, S. Deadline-based scheduling of periodic task systems on multiprocessors. Inf. Process. Lett. 2002, 84, 93–98. [Google Scholar] [CrossRef]
- Chéour, R.; Jmal, M.; Abid, M. Hybrid Energy-Efficient Power Management for Wireless Sensors Networks. In Proceedings of the International Conference on Smart, Monitored and Controlled Cities, Sfax, Tunisia, 17–19 February 2017; pp. 143–146. [Google Scholar]
- Salem, J.B.; Khriji, S.; Baklouti, M.; Kammoun, I.; Kanoun, O. Testbed Implementation of a Fuzzy based Energy Efficient Clustering Algorithm for Wireless Sensor Networks. In Proceedings of the 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD), Istanbul, Turkey, 21–24 March 2019; pp. 351–356. [Google Scholar]
- Yu, D.; Zou, Y.; Yu, J.; Zhang, Y.; Li, F.; Cheng, X.; Dressler, F.; Lau, F.C. Implementing Abstract MAC Layer in Dynamic Networks. IEEE Trans. Mob. Comput. 2020, 20, 1832–1845. [Google Scholar] [CrossRef]
- Chéour, R.; Jmal, M.; Kanoun, O.; Abid, M. Evaluation of Simulators Tools and Power-Aware Scheduling Model for Wireless Sensor Networks. IET Compute. Dig. Tech. 2017, 11, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.; Behera, T.M.; Samal, U.C.; Mohapatra, S.K. Modified threshold for cluster head selection in WSN using first and second order statistics. IET Wirel. Sens. Syst. 2020, 10, 292–298. [Google Scholar] [CrossRef]
- Ahmad, R.; Wazirali, R.; Bsoul, Q.; Abu-Ain, T.; Abu-Ain, W. Feature-Selection and Mutual-Clustering Approaches to Improve DoS Detection and Maintain WSNs’ Lifetime. Sensors 2021, 21, 4821. [Google Scholar] [CrossRef]
- Khriji, S.; El Houssaini, D.; Kammoun, I.; Kanoun, O. A fuzzy based energy aware unequal clustering for wireless sensor networks. In Ad-Hoc, Mobile, and Wireless Networks; Springer: Berlin, Germany, 2018; pp. 126–131. [Google Scholar]
- Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.J. Energy efficient routing algorithm with mobile sink support for wireless sensor networks. Sensors 2019, 19, 1494. [Google Scholar] [CrossRef] [Green Version]
- Gidlund, M.; Lennvall, T.; Neander, J. Energy Efficient Method For Communication Between A Wireless Sensor Network And An Industrial Control System. US Patent Application 13/693,850, 8 April 2013. [Google Scholar]
- Liu, X.; Wu, J. A method for energy balance and data transmission optimal routing in wireless sensor networks. Sensors 2019, 19, 3017. [Google Scholar] [CrossRef] [Green Version]
- Kalnoor, G.; Subrahmanyam, G. A review on applications of Markov decision process model and energy efficiency in wireless sensor networks. Proc. Comput. Sci. 2020, 167, 2308–2317. [Google Scholar] [CrossRef]
- Munir, A.; Gordon-Ross, A. Optimization approaches in wireless sensor networks. In Sustainable Wireless Sensor Networks; IntechOpen Limited: London, UK, 2010; pp. 313–338. [Google Scholar]
- Rout, R.R.; Krishna, M.S.; Gupta, S. Markov decision process-based switching algorithm for sustainable rechargeable wireless sensor networks. IEEE Sens. J. 2016, 16, 2788–2797. [Google Scholar] [CrossRef]
- Dargie, W. Dynamic power management in wireless sensor networks: State-of-the-art. IEEE Sens. J. 2012, 12, 1518–1528. [Google Scholar] [CrossRef]
- Brihi, A. Investigation into the Dependency between Resource Utilization, Power Consumption and Performance in Multimedia Servers. Ph.D. Thesis, Technische Universitat Dresden, Department of Computer Science, Dresden, Germany, 2012. [Google Scholar]
- Kulau, U.; Rottmann, S.; Schildt, S.; van Balen, J.; Wolf, L. Undervolting in real world wsn applications: A long-term study. In Proceedings of the 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS), Washington, DC, USA, 26–28 May 2016; pp. 9–16. [Google Scholar]
- Papadimitriou, G.; Chatzidimitriou, A.; Gizopoulos, D.; Reddi, V.J.; Leng, J.; Salami, B.; Unsal, O.S.; Kestelman, A.C. Exceeding conservative limits: A consolidated analysis on modern hardware margins. IEEE Trans. Device Mater. Reliab. 2020, 20, 341–350. [Google Scholar] [CrossRef]
- Göttel, C.; Parasyris, K.; Unsal, O.; Felber, P.; Pasin, M.; Schiavoni, V. Scrooge Attack: Undervolting ARM Processors for Profit. arXiv 2021, arXiv:2107.00416. [Google Scholar]
- Hamachiyo, T.; Yokota, Y.; Okubo, E. A Cooperative Power-Saving Technique Using DVS and DMS Based on Load Prediction in Sensor Networks. In Proceedings of the 4th International Conference on Sensor Technologies and Applications (SENSORCOMM), Venice, Italy, 18–25 July 2010; pp. 7–12. [Google Scholar]
- Buhrig, A. Optimisation de la Consommation des Noeuds de réSeaux de Capteurs Sans Fil. Ph.D. Thesis, Institut National Polytechnique De Grenoble, Grenoble, France, 2008. [Google Scholar]
- Maghsoud, Z.; Noori, H.; Mozaffari, S.P. PEPS: Predictive energy-efficient parallel scheduler for multi-core processors. J. Supercomput. 2021, 77, 6566–6585. [Google Scholar] [CrossRef]
- Liu, S.; Qiu, Q.; Wu, Q. Energy aware dynamic voltage and frequency selection for real-time systems with energy harvesting. In Proceedings of the Design, Automation and Test in Europe, Munich, Germany, 10–14 March 2008; pp. 236–241. [Google Scholar]
- Popovici, E.; Magno, M.; Marinkovic, S. Power management techniques for wireless sensor networks: A review. In Proceedings of the 5th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Bari, Italy, 13–14 June 2013; pp. 194–198. [Google Scholar]
- Estrada-López, J.J.; Castillo-Atoche, A.A.; Vázquez-Castillo, J.; Sánchez-Sinencio, E. Smart soil parameters estimation system using an autonomous wireless sensor network with dynamic power management strategy. IEEE Sens. J. 2018, 18, 8913–8923. [Google Scholar] [CrossRef]
- Hoang, V.T.; Julien, N.; Berruet, P. Increasing the autonomy of Wireless Sensor Node by effective use of both DPM and DVFS methods. In Proceedings of the 2013 IEEE Faible Tension Faible Consommation (FTFC), Bari, Italy, 13–14 June 2013; pp. 1–4. [Google Scholar]
- Bambagini, M.; Marinoni, M.; Aydin, H.; Buttazzo, G. Energy-aware scheduling for real-time systems: A survey. ACM Trans. Embed. Comput. Syst. TECS 2016, 15, 1–34. [Google Scholar] [CrossRef]
- Chen, G.; Huang, K.; Knoll, A. Energy optimization for real-time multiprocessor system-on-chip with optimal DVFS and DPM combination. ACM Trans. Embed. Comput. Syst. TECS 2014, 13, 111. [Google Scholar] [CrossRef] [Green Version]
- Trigona, C.; Graziani, S.; Di Pasquale, G.; Pollicino, A.; Nisi, R.; Licciulli, A. Green energy harvester from vibrations based on bacterial cellulose. Sensors 2020, 20, 136. [Google Scholar]
- Amaro, J.P.; Cortesão, R.; Landeck, J.; Ferreira, F.J. Harvested Power Wireless Sensor Network Solution for Disaggregated Current Estimation in Large Buildings. IEEE Trans. Instrum. Meas. 2015, 64, 1847–1857. [Google Scholar] [CrossRef]
- Le, T.N. Global Power Management System for Self-Powered Autonomous Wireless Sensor Node. Ph.D. Thesis, Université Rennes 1, Rennes, France, 2014. [Google Scholar]
- Hannan, M.A.; Mutashar, S.; Samad, S.A.; Hussain, A. Energy harvesting for the implantable biomedical devices: Issues and challenges. Biomed. Eng. Online 2014, 13, 79. [Google Scholar] [CrossRef] [Green Version]
- Dall’Ora, R.; Raza, U.; Brunelli, D.; Picco, G.P. SensEH: From simulation to deployment of energy harvesting wireless sensor networks. In Proceedings of the IEEE 39th Conference on Local Computer Networks Workshops (LCN Workshops), Edmonton, AB, Canada, 8–11 September 2014. [Google Scholar]
- Sachan, V.; Imam, S.; Beg, M. Energy-Efficient Communication Methods in Wireless Sensor Networks: A Critical Review. Int. J. Comput. Appl. 2012, 39, 35–48. [Google Scholar]
- Shwe, H.Y.; Jiang, X.H.; Horiguchi, S. Energy saving in wireless sensor networks. J. Commun. Comput. 2009, 6, 20–27. [Google Scholar]
- Kim, Y.; Lee, K.S.; Lee, C.G. Energy Efficient Real-Time Scheduling Using DPM on Mobile Sensors with a Uniform Multi-Cores. Sensors 2017, 17, 2906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosahalli, D.; Srinivas, K.G. Enhanced reinforcement learning assisted dynamic power management model for internet-of-things centric wireless sensor network. IET Commun. 2020, 14, 3748–3760. [Google Scholar] [CrossRef]
- Chetto, M.; El Ghor, H. Scheduling and power management in energy harvesting computing systems with real-time constraints. J. Syst. Arch. 2019, 98, 243–248. [Google Scholar] [CrossRef]
- Arivalai, C.; Thenmozhi, M. Dynamic Power Management for Improving Sensor Lifetime in Internet of Things Based Wireless Sensor Environments. J. Comput. Theor. Nanosci. 2021, 18, 913–921. [Google Scholar]
- Paul, A. Dynamic power management for ubiquitous network devices. Adv. Sci. Lett. 2013, 19, 2046–2049. [Google Scholar] [CrossRef]
- Bogliolo, A.; Lattanzi, E.; Freschi, V. Idleness as a resource in energy-neutral WSNs. In Proceedings of the 1st International Workshop on Energy Neutral Sensing Systems, Rome, Italy, 13 November 2013; p. 12. [Google Scholar]
- Lin, C.; He, Y.X.; Xiong, N. An energy-efficient dynamic power management in wireless sensor networks. In Proceedings of the Fifth International Symposium on Parallel and Distributed Computing, Timisoara, Romania, 6–9 July 2006; pp. 148–154. [Google Scholar]
- Sinha, A.; Chandrakasan, A. Dynamic power management in wireless sensor networks. IEEE Des. Test Comput. 2001, 18, 62–74. [Google Scholar] [CrossRef]
- Kulau, U.; Busching, F.; Wolf, L. A Node’s Life: Increasing WSN Lifetime by Dynamic Voltage Scaling. In Proceedings of the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), Cambridge, MA, USA, 20–23 May 2013; pp. 241–248. [Google Scholar]
- Kim, W.; Kim, J.; Min, S. A dynamic voltage scaling algorithm for dynamic-priority hard real-time systems using slack time analysis. In Proceedings of the Conference on Design, Automation and Test in Europe, Paris, France, 4–8 March 2002; p. 788. [Google Scholar]
- Kim, H.Y.; Lee, S.W. Lifespan Extension of an IoT System with a Fixed Lithium Battery. IEICE Trans. Inf. Syst. 2020, 103, 2559–2567. [Google Scholar] [CrossRef]
- Harkut, D.; Ali, M.; Lohiya, P. Scheduling Task of Wireless Sensor Network Using Earliest Deadline First Algorithm. Int. J. Sci. Res. Comput. Sci. Eng. 2014, 2, 1–6. [Google Scholar]
- Pughat, A.; Sharma, V. A review on stochastic approach for dynamic power management in wireless sensor networks. Hum.-Cent. Comput. Inf. Sci. 2015, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Panic, G.; Stamenkovic, Z. Activity Profiling and Power Estimation for Embedded Wireless Sensor Node Design. In Proceedings of the 2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Belgrade, Serbia, 22–24 April 2015; pp. 231–236. [Google Scholar]
- Hsieh, C.M.; Samie, F.; Srouji, M.S.; Wang, M.; Wang, Z.; Henkel, J. Hardware/software co-design for a wireless sensor network platform. In Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), New Delhi, India, 12–17 October 2014; pp. 1–10. [Google Scholar]
- Chéour, R.; Jmal, M.W.; Kanoun, O.; Abid, M. Towards energy-efficient power management for wireless sensors networks. In Energy Harvesting for Wireless Sensor Networks; De Gruyter Oldenbourg: Berlin, Germany, 2018; pp. 257–268. [Google Scholar]
- Kansal, A.; Hsu, J.; Zahedi, S.; Srivastava, M.B. Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. (TECS) 2007, 6, 32. [Google Scholar] [CrossRef]
- Zhu, N. Simulation and Optimization of Energy Consumption in Wireless Sensor Networks. Ph.D. Thesis, Ecole Centrale de Lyon, Ecully, France, 2013. [Google Scholar]
Technique | Performance | Overhead | Architecture | Design | Validation | Power Type | |
---|---|---|---|---|---|---|---|
Power Mode Based Strategies | DPM | ++ | +− | ++ | ++ | ++ | Static & Leackage |
Clock Gating | +− | − | − | − | − | Dynamic | |
Power Gating | ++ | +− | ++ | ++ | ++ | Leackage & Standby | |
Multi Voltage Design Strategies | MVS | ++ | +− | ++ | +− | − | Dynamic |
SVS | +− | − | − | − | None | Dynamic | |
DVFS | ++ | +− | ++ | ++ | ++ | Dynamic |
[51,52,53,54] | [27,35,55] | [26,49] | [59] | [28,29,30] | [35,37,38] | [58] | [23,24,25] | [60] | [61] | [33,57] | HEEPS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DPM | x | x | x | x | x | |||||||
DVFS | x | x | x | x | ||||||||
Undervolting | x | |||||||||||
Scheduling | x | x | x | x | x | |||||||
MDP | x | x | ||||||||||
Clock Gating | x | x | ||||||||||
Power Gating | x |
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | |
---|---|---|---|---|---|---|---|---|---|---|
Period | 80 | 100 | 120 | 150 | 200 | 250 | 80 | 80 | 80 | 80 |
WCET | 10 | 30 | 20 | 15 | 20 | 5 | 10 | 15 | 12 | 7 |
BCET | 1 | 3 | 4 | 3 | 4 | 6 | 1 | 3 | 4 | 3 |
Deadline | 80 | 100 | 120 | 150 | 200 | 250 | 80 | 80 | 80 | 80 |
Metrics | Values |
---|---|
Time frame | 1000 ms |
Precision | s |
Number of tasks (n) | 2, 5, 10, 20 |
Number of Processors (m) | 2, 3, 5, 10 |
70, 75, 80, 85, 90, 95, 97.5, 100 | |
Execution time | WCET and AET |
Failure to meet deadlines | Task abortion |
Scheduler | GEDF |
Distribution of periods | [2, 100] ms |
Penalties Overheads | Applied to DPM and not for DVFS |
F (MHz) | 8 | 6 | 4 | 2 | 1 |
V (V) | 5.5 | 4.05 | 3.6 | 3.15 | 2.7 |
1 | 0.75 | 0.5 | 0.25 | 0.125 | |
Energy (J) | 0.86 | 0.63 | 0.41 | 0.23 | 0.11 |
References | Algorithms | Tasks | On-Line | Off-Line | Energy Harvesting | Scheduler | Penalty of Transition | Migration | Overhead |
---|---|---|---|---|---|---|---|---|---|
[26] | DPM | Periodic | x | FIFO | No | Non | No | ||
[49] | DPM | Periodic | x | x | EDF | x | No | x | |
[35] | DVFS | x | x | - | - | No | |||
[27] | DVFS | Periodic | No | ||||||
[34] | EA-DVFS | Periodic, Preemptive | x | x | EDF | - | No | Negligible | |
[57] | DVFS-HESS | Uniform, synthetic | x | x | LSA | x | - | No | |
[37] | DPM-DVFS | Periodic, Preemptive | x | Non | Non | ||||
[39] | DPM-DVFS | Periodic, dependent | x | - | Time-Triggered | x | x | ||
[42] | BQS-PM | Periodic | x | x | - | x | No | Yes | |
[63] | KAN-PM | Periodic | x | x | - | No | |||
[64] | iMASKO | Sporadique | x | x | x | - | - | ||
HEEPS | DPM-DVFS | Periodic, Preemptive, Independent | x | - | GEDF | x | Yes | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chéour, R.; Jmal, M.W.; Khriji, S.; El Houssaini, D.; Trigona, C.; Abid, M.; Kanoun, O. Towards Hybrid Energy-Efficient Power Management in Wireless Sensor Networks. Sensors 2022, 22, 301. https://doi.org/10.3390/s22010301
Chéour R, Jmal MW, Khriji S, El Houssaini D, Trigona C, Abid M, Kanoun O. Towards Hybrid Energy-Efficient Power Management in Wireless Sensor Networks. Sensors. 2022; 22(1):301. https://doi.org/10.3390/s22010301
Chicago/Turabian StyleChéour, Rym, Mohamed Wassim Jmal, Sabrine Khriji, Dhouha El Houssaini, Carlo Trigona, Mohamed Abid, and Olfa Kanoun. 2022. "Towards Hybrid Energy-Efficient Power Management in Wireless Sensor Networks" Sensors 22, no. 1: 301. https://doi.org/10.3390/s22010301
APA StyleChéour, R., Jmal, M. W., Khriji, S., El Houssaini, D., Trigona, C., Abid, M., & Kanoun, O. (2022). Towards Hybrid Energy-Efficient Power Management in Wireless Sensor Networks. Sensors, 22(1), 301. https://doi.org/10.3390/s22010301