LSTM-Based Path Prediction for Effective Sensor Filtering in Sensor Registry System
<p>The process of the sliding window (with a length of three cells in the past) and the model input–output pairs.</p> "> Figure 2
<p>Graphic representation of the skip-gram model.</p> "> Figure 3
<p>Overview of the neural network model with LSTM for next cell prediction.</p> "> Figure 4
<p>Service provision rate simulation flow.</p> "> Figure 5
<p>Examples of the communication disks. (<b>a</b>) The communication disks are represented as circles with hatch fills. (<b>b</b>) The intersection areas of the cells and communication disks are different. The area ratio is defined as the intersection area in the cell divided by the area of the cell. It implies that we can identify the connectivity by the area ratio.</p> "> Figure 6
<p>Example of top five proximal cells of CELL6263. “0-1.000” indicates that it is the target cell and the cosine similarity to itself is 1.000. “1-0.902” denotes that CELL6380 ranks 1 in proximal cells, and the cosine similarity to the target cell is 0.902.</p> "> Figure 7
<p>Example of top ten proximal cells of CELL6264. The cell is under the open sky. “0-1.000” indicates that it is the target cell and the cosine similarity to itself is 1.000. “1-0.957” denotes that CELL6147 ranks 1 in proximal cells and the cosine similarity to the target cell of 0.957.</p> "> Figure 8
<p>Example of top ten proximal cells of CELL4981. The cells are indoors. “0-1.000” indicates that it is the target cell and the cosine similarity to itself is 1.000. “1-0.953” denotes that CELL4864 ranks 1 in proximal cells and the cosine similarity to the target cell of 0.953.</p> "> Figure 9
<p>Similarity distribution of (<b>a</b>) buildings and (<b>b</b>) roads.</p> "> Figure 10
<p>Example of two positional relationships when the average distances are (<b>a</b>) <math display="inline"><semantics> <mrow> <mn>22.0</mn> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <mn>16.0</mn> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>. The average distance is the average of the distances from the center of the target cell (red) to the centers of other cells (blue).</p> "> Figure 11
<p>Two examples of the positional relationship of the cells and the communication disk. The colored cells intersect with the border of the communication disk. When a user moves in the colored cells, the red area is proportional to the service provision rate. The ratio of the red area to the colored cells is (<b>a</b>) 0.613 and (<b>b</b>) 0.303.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Problem Definition
3.2. Trajectory Preprocessing
3.3. Word2vec Model
3.4. LSTM for Path Prediction
3.5. Service Provision Rate Simulation Flow
Algorithm 1: evaluate_service_request_ideal_scenario |
Algorithm 2: evaluate_service_request_with_GPS_drift |
Algorithm 3: evaluate_service_request_with_path_prediction |
4. Experiment
4.1. Dataset
4.2. Experimental Settings
4.3. Evaluation of Geo-Embeddings
4.4. Evaluation of Path Prediction
4.5. Evaluation of Service Provide Rate
4.6. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
SRS | Sensor Registry System |
HMM | Hidden Markov Model |
RNN | Recurrent Neural Network |
RSRP | Reference Signal Received Power |
References
- Stoyanova, M.; Nikoloudakis, Y.; Panagiotakis, S.; Pallis, E.; Markakis, E.K. A Survey on the Internet of Things (IoT) Forensics: Challenges, Approaches, and Open Issues. IEEE Commun. Surv. Tutor. 2020, 22, 1191–1221. [Google Scholar] [CrossRef]
- Haghi, M.; Neubert, S.; Geissler, A.; Fleischer, H.; Stoll, N.; Stoll, R.; Thurow, K. A Flexible and Pervasive IoT-Based Healthcare Platform for Physiological and Environmental Parameters Monitoring. IEEE Internet Things J. 2020, 7, 5628–5647. [Google Scholar] [CrossRef]
- Wang, C.; Chen, N.; Wang, W.; Chen, Z. A Hydrological Sensor Web Ontology Based on the SSN Ontology: A Case Study for a Flood. ISPRS Int. J. Geo-Inf. 2018, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Haseeb, K.; Ud Din, I.; Almogren, A.; Islam, N. An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture. Sensors 2020, 20, 2081. [Google Scholar] [CrossRef] [PubMed]
- Terroso-Saenz, F.; González-Vidal, A.; Ramallo-González, A.P.; Skarmeta, A.F. An open IoT platform for the management and analysis of energy data. Future Gener. Comput. Syst. 2019, 92, 1066–1079. [Google Scholar] [CrossRef]
- Gyrard, A.; Zimmermann, A.; Sheth, A. Building IoT-Based Applications for Smart Cities: How Can Ontology Catalogs Help? IEEE Internet Things J. 2018, 5, 3978–3990. [Google Scholar] [CrossRef] [Green Version]
- Jeong, D. Framework for Seamless Intrpretation of Semantics in Heterogeneous Ubiquitous Sensor Networks. Int. J. Softw. Eng. Its Appl. 2012, 6, 9–16. [Google Scholar]
- Lee, S.; Jeong, D.; Baik, D.K.; Kim, D.K. Path Prediction Method for Effective Sensor Filtering in Sensor Registry System. Int. J. Distrib. Sens. Netw. 2015, 11, 613473. [Google Scholar] [CrossRef]
- Jung, H.; Jeong, D.; Lee, S.; On, B.W.; Baik, D.K. A Network Coverage Information-Based Sensor Registry System for IoT Environments. Sensors 2016, 16, 1154. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Jeong, D.; Lee, S. Development of Sensor Registry System-Based Predictive Information Service Using a Grid. Sensors 2018, 18, 3620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.; Qu, Z.; Blumm, N.; Barabási, A.L. Limits of Predictability in Human Mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Li, R.; Kang, R.; Huang, N. The method of network reliability and availability simulation based on Monte Carlo. In Proceedings of the 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, Chengdu, China, 15–18 June 2012; pp. 245–250. [Google Scholar] [CrossRef]
- Kim, S. Clustered Noise Filtering Based Trajectory Refinement Method. J. Korean Inst. Inf. Technol. 2020, 18, 11–20. [Google Scholar] [CrossRef]
- Sunny, A.I.; Zhao, A.; Li, L.; Kanteh Sakiliba, S. Low-Cost IoT-Based Sensor System: A Case Study on Harsh Environmental Monitoring. Sensors 2021, 21, 214. [Google Scholar] [CrossRef] [PubMed]
- Khoa, V.V.; Takayama, S. Wireless sensor network in landslide monitoring system with remote data management. Measurement 2018, 118, 214–229. [Google Scholar] [CrossRef]
- Kim, T.; Yoo, S.e.; Kim, Y. Edge/Fog Computing Technologies for IoT Infrastructure. Sensors 2021, 21, 3001. [Google Scholar] [CrossRef] [PubMed]
- Myeong, S.; Kim, Y.; Ahn, M.J. Smart City Strategies—Technology Push or Culture Pull? A Case Study Exploration of Gimpo and Namyangju, South Korea. Smart Cities 2021, 4, 41–53. [Google Scholar] [CrossRef]
- Giannotti, F.; Nanni, M.; Pinelli, F.; Pedreschi, D. Trajectory Pattern Mining. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’07, San Jose, CA, USA, 12–15 August 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 330–339. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Li, D.; Zhang, T.; An, L.; Guo, M.; Chen, G. Mining Regular Routes from GPS Data for Ridesharing Recommendations. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing, UrbComp ’12, Beijing, China, 12 August 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 79–86. [Google Scholar] [CrossRef]
- Monreale, A.; Pinelli, F.; Trasarti, R.; Giannotti, F. WhereNext: A Location Predictor on Trajectory Pattern Mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, Paris, France, 28 June–1 July 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 637–646. [Google Scholar] [CrossRef]
- Chen, L.; Lv, M.; Ye, Q.; Chen, G.; Woodward, J. A personal route prediction system based on trajectory data mining. Inf. Sci. 2011, 181, 1264–1284. [Google Scholar] [CrossRef]
- Tiwari, V.S.; Arya, A.; Chaturvedi, S. Scalable prediction by partial match (PPM) and its application to route prediction. Appl. Inform. 2018, 5, 4. [Google Scholar] [CrossRef]
- Krumm, J. A Markov Model for Driver Turn Prediction. In Proceedings of the Society of Automotive Engineers (SAE) 2008 World Congress, Detroit, MI, USA, 14–17 April 2008. [Google Scholar]
- Ashbrook, D.; Starner, T. Using GPS to Learn Significant Locations and Predict Movement across Multiple Users. Pers. Ubiquitous Comput. 2003, 7, 275–286. [Google Scholar] [CrossRef]
- Gao, H.; Tang, J.; Liu, H. Mobile Location Prediction in Spatio-Temporal Context. In Mobile Data Challenge 2012 (by Nokia); Nokia Research Center (NRC): Helsinki, Finland, 2012. [Google Scholar]
- Gambs, S.; Killijian, M.O.; del Prado Cortez, M.N.N. Next Place Prediction Using Mobility Markov Chains. In Proceedings of the First Workshop on Measurement, Privacy, and Mobility, MPM ’12, Bern, Switzerland, 10 April 2012; Association for Computing Machinery: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, W.; Zhang, L.; Xiong, Y.; Sun, Y. Path prediction based on second-order Markov chain for the opportunistic networks. In Proceedings of the 2014 IEEE Computers, Communications and IT Applications Conference, Beijing, China, 20–22 October 2014; pp. 116–120. [Google Scholar] [CrossRef]
- Mathew, W.; Raposo, R.; Martins, B. Predicting Future Locations with Hidden Markov Models. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp ’12, Pittsburgh, PA, USA, 5–8 September 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 911–918. [Google Scholar] [CrossRef]
- Jeung, H.; Shen, H.T.; Zhou, X. Mining Trajectory Patterns Using Hidden Markov Models. In Data Warehousing and Knowledge Discovery; Song, I.Y., Eder, J., Nguyen, T.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 470–480. [Google Scholar]
- Kim, Y.J.; Cho, S.B. A HMM-Based Location Prediction Framework with Location Recognizer Combining k-Nearest Neighbor and Multiple Decision Trees. In Hybrid Artificial Intelligent Systems; Pan, J.S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 618–628. [Google Scholar]
- Liu, Q.; Wu, S.; Wang, L.; Tan, T. Predicting the next Location: A Recurrent Model with Spatial and Temporal Contexts. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, Phoenix, AZ, USA, 12–17 February 2016; AAAI Press: Phoenix, Arizona, 2016; pp. 194–200. [Google Scholar]
- Wu, F.; Fu, K.; Wang, Y.; Xiao, Z.; Fu, X. A Spatial-Temporal-Semantic Neural Network Algorithm for Location Prediction on Moving Objects. Algorithms 2017, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Crivellari, A.; Beinat, E. From Motion Activity to Geo-Embeddings: Generating and Exploring Vector Representations of Locations, Traces and Visitors through Large-Scale Mobility Data. ISPRS Int. J. Geo-Inf. 2019, 8, 134. [Google Scholar] [CrossRef] [Green Version]
- Crivellari, A.; Beinat, E. Identifying Foreign Tourists’ Nationality from Mobility Traces via LSTM Neural Network and Location Embeddings. Appl. Sci. 2019, 9, 2861. [Google Scholar] [CrossRef] [Green Version]
- Crivellari, A.; Beinat, E. LSTM-Based Deep Learning Model for Predicting Individual Mobility Traces of Short-Term Foreign Tourists. Sustainability 2020, 12, 349. [Google Scholar] [CrossRef] [Green Version]
- Crivellari, A.; Beinat, E. Trace2trace—A Feasibility Study on Neural Machine Translation Applied to Human Motion Trajectories. Sensors 2020, 20, 3503. [Google Scholar] [CrossRef] [PubMed]
- Crivellari, A.; Beinat, E. Forecasting Spatially-Distributed Urban Traffic Volumes via Multi-Target LSTM-Based Neural Network Regressor. Mathematics 2020, 8, 2233. [Google Scholar] [CrossRef]
- Gulati, A.; Qin, J.; Chiu, C.C.; Parmar, N.; Zhang, Y.; Yu, J.; Han, W.; Wang, S.; Zhang, Z.; Wu, Y.; et al. Conformer: Convolution-augmented Transformer for Speech Recognition. arXiv 2020, arXiv:2005.08100. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and Their Compositionality. 2013. Available online: http://xxx.lanl.gov/abs/1310.4546 (accessed on 25 September 2021).
- Altché, F.; de La Fortelle, A. An LSTM network for highway trajectory prediction. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 353–359. [Google Scholar] [CrossRef] [Green Version]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Feng, J.; Li, Y.; Zhang, C.; Sun, F.; Meng, F.; Guo, A.; Jin, D. DeepMove: Predicting Human Mobility with Attentional Recurrent Networks. In Proceedings of the 2018 World Wide Web Conference, International World Wide Web Conferences Steering Committee: Republic and Canton of Geneva, CHE, WWW ’18, Lyon, France, 23–27 April 2018; pp. 1459–1468. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Li, Y.; Yang, Z.; Qiu, Q.; Jin, D. Predicting Human Mobility with Semantic Motivation via Multi-task Attentional Recurrent Networks. IEEE Trans. Knowl. Data Eng. 2020. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, J.; Zhou, R.; Zhao, P.; Liu, C.; Zhu, F. On Prediction of User Destination by Sub-Trajectory Understanding: A Deep Learning Based Approach. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18, Turin, Italy, 22–26 October 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1413–1422. [Google Scholar] [CrossRef]
- Altaf, B.; Yu, L.; Zhang, X. Spatio-Temporal Attention based Recurrent Neural Network for Next Location Prediction. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 937–942. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Z.; Lee, W.; Du, D.Z. Optimal Coverage in Wireless Sensor Networks; Springer International Publishing: Cham, Switzerland, 2020; p. 162. [Google Scholar]
- Dauphin, Y.N.; Fan, A.; Auli, M.; Grangier, D. Language Modeling with Gated Convolutional Networks. arXiv 2017, arXiv:1612.08083. [Google Scholar]
- Nikhil, N.; Morris, B.T. Convolutional Neural Network for Trajectory Prediction. 2018. Available online: http://xxx.lanl.gov/abs/1809.00696 (accessed on 25 September 2021).
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
- Hazan, I.; Shabtai, A. Improving Grid-Based Location Prediction Algorithms by Speed and Direction Based Boosting. IEEE Access 2019, 7, 21211–21219. [Google Scholar] [CrossRef]
Buildings top 10 average distance | |
Roads top 10 average distance |
Marco-Recall | Weighted-Recall | |
---|---|---|
Vanilla RNN | 0.1037 | 0.2956 |
CBP | 0.2620 | 0.4427 |
GatedCNN | 0.1856 | 0.5296 |
LSTM | 0.6057 | 0.6780 |
Average Distance= | ≤15 m | 15–20 m | 20–25 m | 25–30 m | >30 m |
---|---|---|---|---|---|
Vanilla RNN | 0.1685 (0.0567) | 0.2371 (0.0911) | 0.4144 (0.0757) | 0.4798 (0.0622) | 0.2800 (0.0506) |
CBP | 0.376 (0.1512) | 0.4183 (0.2181) | 0.5025 (0.1576) | 0.5465 (0.1243) | 0.3721 (0.1103) |
GatedCNN | 0.4012 (0.0875) | 0.5015 (0.1494) | 0.6275 (0.0755) | 0.6612 (0.0572) | 0.4256 (0.0326) |
LSTM | 0.5754 (0.3098) | 0.6646 (0.4866) | 0.7333 (0.4424) | 0.7563 (0.4042) | 0.6738 (0.4178) |
Displacement= | ≤50 m | 50–100 m | 100–150 m | 150–200 | >200 m |
---|---|---|---|---|---|
Vanilla RNN | 0.1039 (0.0747) | 0.1362 (0.0816) | 0.2695 (0.1042) | 0.3729 (0.1124) | 0.1052 (0.0534) |
CBP | 0.2016 (0.1745) | 0.3017 (0.2036) | 0.4340 (0.2813) | 0.5015 (0.2813) | 0.1825 (0.1340) |
GatedCNN | 0.1926 (0.1197) | 0.3287 (0.1369) | 0.5287 (0.1904) | 0.6122 (0.2028) | 0.1514 (0.0682) |
LSTM | 0.4546 (0.4456) | 0.5797 (0.5393) | 0.6859 (0.6193) | 0.7165 (0.6031) | 0.4528 (0.4030) |
Number of Sensors | 20 | 50 | 100 | 200 | 300 |
---|---|---|---|---|---|
Sensor communication disks coverage rate | 0.052 | 0.126 | 0.236 | 0.419 | 0.560 |
Number of Sensors | 20 | 50 | 100 | 200 | 300 |
---|---|---|---|---|---|
Actual scenario () | 0.606 | 0.607 | 0.613 | 0.612 | 0.616 |
Vanilla RNN | 0.661 | 0.662 | 0.671 | 0.669 | 0.674 |
CBP | 0.667 | 0.667 | 0.675 | 0.673 | 0.678 |
GatedCNN | 0.658 | 0.660 | 0.669 | 0.667 | 0.672 |
LSTM | 0.670 | 0.671 | 0.678 | 0.677 | 0.681 |
Ideal scenario | 0.674 | 0.674 | 0.681 | 0.680 | 0.684 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Lee, S.; On, B.-W.; Jeong, D. LSTM-Based Path Prediction for Effective Sensor Filtering in Sensor Registry System. Sensors 2021, 21, 8106. https://doi.org/10.3390/s21238106
Chen H, Lee S, On B-W, Jeong D. LSTM-Based Path Prediction for Effective Sensor Filtering in Sensor Registry System. Sensors. 2021; 21(23):8106. https://doi.org/10.3390/s21238106
Chicago/Turabian StyleChen, Haotian, Sukhoon Lee, Byung-Won On, and Dongwon Jeong. 2021. "LSTM-Based Path Prediction for Effective Sensor Filtering in Sensor Registry System" Sensors 21, no. 23: 8106. https://doi.org/10.3390/s21238106
APA StyleChen, H., Lee, S., On, B. -W., & Jeong, D. (2021). LSTM-Based Path Prediction for Effective Sensor Filtering in Sensor Registry System. Sensors, 21(23), 8106. https://doi.org/10.3390/s21238106