Extended PKM Fixturing System for Micro-Positioning and Vibration Rejection in Machining Application
<p>(<b>a</b>) PKM locator and support prototype [<a href="#B7-sensors-21-07739" class="html-bibr">7</a>]; (<b>b</b>) kinematic structure of a 3-DOF PKM; (<b>c</b>) view of pose rotation around <span class="html-italic">X</span>-axis; (<b>d</b>) view of pose rotation around <span class="html-italic">Y</span>-axis.</p> "> Figure 2
<p>Step function following performance of PKM platform—PZT module A and the PKM coupling effects, the errors observed on PZT-module B and PZT-module C.</p> "> Figure 3
<p>(<b>a</b>) Geometric representation of 3-DoF PKM assembly simplified model; (<b>b</b>) [<span class="html-italic">z</span>; <span class="html-italic">θ<sub>x</sub></span>; <span class="html-italic">θ<sub>y</sub></span>] motions of the PKM platform by super-position of active modules.</p> "> Figure 4
<p>(<b>a</b>) Flexure-based mechanism with actuator connection scheme for a single axis; (<b>b</b>) simplified model of the PZT platform scheme for a single axis.</p> "> Figure 5
<p>Bode diagram of platform modal comparison, blue line—K<sub>pzt</sub> and K<sub>c</sub> in series-wise setting and red line—flexure-based mechanism with interface node for actuator connection.</p> "> Figure 6
<p>SISO closed loop representation.</p> "> Figure 7
<p>Bode diagram of the complementary sensitivity function.</p> "> Figure 8
<p>Bode diagram of the sensitivity function.</p> "> Figure 9
<p>Set-point following (top) and corresponding error (bottom) for the 3 SISO (<b>A</b>–<b>C</b>).</p> "> Figure 10
<p>Set-point following (top) and corresponding error (bottom) for the 3 SISO (<b>A</b>–<b>C</b>).</p> "> Figure 11
<p>Set-point following (top) and corresponding error (bottom) for the 3 SISO (<b>A</b>–<b>C</b>).</p> "> Figure 12
<p>Disturbance open loop (top red, solid line) and disturbance rejection closed loop (bottom blue, solid line) for the 3 SISO (<b>A</b>–<b>C</b>).</p> "> Figure 13
<p>Disturbance open loop (top red, solid line) and disturbance rejection closed loop (bottom blue, solid line) for the 3 SISO (<b>A</b>–<b>C</b>).</p> "> Figure 14
<p>Cutting machining signals implemented in PKM platform (top). Disturbance open loop (bottom solid line) and disturbance rejection closed loop (bottom blue, solid line) for the 3 SISO (<b>A</b>–<b>C</b>).</p> ">
Abstract
:1. Introduction
- -
- Locators are devoted to correctly positioning the workpiece in 3D space;
- -
- Supports enable the workpiece-static load-reaction without any location or positioning function;
- -
- -
- In addition, the closed loop fixtures perform two important functions:
- -
- Workpiece location: to locate and place the part in the workspace;
- -
- Disturbance suppression: to maintain the workpiece in a predefined position and reject any manufacturing forces or external perturbation;
2. The Concept and Formulation of 3-DoF PKM Piezo-Actuated Platform: Kinematics and Dynamics
The Modelling of the Piezo Actuator
3. Control Algorithm Design and Methodology
- -
- The design of a precise set-point following controller and definition of a disturbance rejection strategy;
- -
- Bumpless switching application and controller tuning.
3.1. Controller Design
3.2. Controller Tuning
4. Numerical Simulation and MIMO Validation
4.1. SISO Coupling Effect
4.2. Set-Point Following: Tracking Performance
4.3. Disturbance Rejection Performance
5. Tracking Performance under Continuously Varying Disturbances
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Merlet, J.-P. Parallel Robots; Springer: Berlin/Heidelberg, Germany, 2006; Volume 128. [Google Scholar]
- Nixon, F. Managing to Achieve Quality; McGraw Hill: Maidenhead, UK, 1971. [Google Scholar]
- Vasundara, M.; Padmanaban, K.P. Recent developments on machining fixture layout design, analysis, and optimization using finite element method and evolutionary techniques. Int. J. Adv. Manuf. Technol. 2014, 70, 79–96. [Google Scholar] [CrossRef]
- Kasprzak, W.; Szynkiewicz, W.; Zlatanov, D.; Zielińska, T. A hierarchical CSP search for path planning of cooperating self-reconfigurable mobile fixtures. Eng. Appl. Artif. Intell. 2014, 34, 85–98. [Google Scholar] [CrossRef]
- Bakker, O.J.; Papastathis, T.N.; Popov, A.A.; Ratchev, S.M. Active fixturing: Literature review and future research directions. Int. J. Prod. Res. 2013, 51, 3171–3190. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, M.Y.; Wang, K.; Mei, X. Multi-objective optimization design of a fixture layout considering locator displacement and force-deformation. Int. J. Adv. Manuf. Technol. 2013, 67, 1267–1279. [Google Scholar] [CrossRef]
- Aggogeri, F.; Borboni, A.; Merlo, A.; Pellegrini, N.; Tiboni, M. Design of a 3-DOFs parallel robotic device for miniaturized object machining. Mech. Mach. Sci. 2019, 67, 325–332. [Google Scholar]
- Borboni, A.; Aggogeri, F.; Merlo, A.; Pellegrini, N.; Amici, C. PKM mechatronic clamping adaptive device. Int. J. Adv. Robot. Syst. 2015, 12, 42. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, L. Kinematics analysis and workspace investigation of a novel 2-DOF parallel manipulator applied in vehicle driving simulator. Robot. Comput.-Integr. Manuf. 2013, 29, 113–120. [Google Scholar] [CrossRef]
- Zhao, Y.; Mei, J.; Niu, W. Vibration error-based trajectory planning of a 5-dof hybrid machine tool. Robot. Comput.-Integr. Manuf. 2021, 69, 102095. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, D.; Shirinzadeh, B. Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation. Precis. Eng. 2011, 35, 554–565. [Google Scholar] [CrossRef]
- Dejima, S.; Gao, W.; Katakura, K.; Kiyono, S.; Tomita, Y. Dynamic modelling, controller design and experimental validation of a planar motion stage for precision positioning. Precis. Eng. 2005, 29, 263–271. [Google Scholar] [CrossRef]
- Liaw, H.C.; Shirinzadeh, B. Robust generalised impedance control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulator. Sens. Actuators A Phys. 2008, 148, 443–453. [Google Scholar] [CrossRef]
- Shen, J.C.; Jywe, W.Y.; Chiang, H.K.; Shu, Y.L. Precision tracking control of a piezoelectric-actuated system. Precis. Eng. 2008, 32, 71–78. [Google Scholar] [CrossRef]
- Liaw, H.C.; Shirinzadeh, B.; Smith, J. Robust motion tracking control of piezo-driven flexure-based four-bar mechanism for micro/nano manipulation. Mechatronics 2008, 18, 111–120. [Google Scholar] [CrossRef]
- Chen, N.; Tian, C. Design, modeling and testing of a 3-DOF flexible piezoelectric thin sheet nanopositioner. Sens. Actuators A Phys. 2021, 323, 112660. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, Y.; Liu, X.; Shirinzadeh, B.; Wang, F.; Zhang, D. An inverse prandtl–ishlinskii model based decoupling control methodology for a 3-dof flexure-based mechanism. Sens. Actuators A Phys. 2015, 230, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Del Sol, I.; Rivero, A.; López de Lacalle, L.N.; Gamez, A.J. Thin-Wall Machining of Light Alloys: A Review of Models and Industrial Approaches. Materials 2019, 12, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Xu, D.; Liu, Q. Milling vibration attenuation by eddy current damping. Int. J. Adv. Manuf. Technol. 2015, 81, 445–454. [Google Scholar] [CrossRef]
- Wang, S.; Song, Q.; Liu, Z. Vibration suppression of thin-walled workpiece milling using a time-space varying PD control method via piezoelectric actuator. Int. J. Adv. Manuf. Technol. 2019, 105, 2843–2856. [Google Scholar] [CrossRef]
- Wang, X.; Song, Q.; Gupta, M.K.; Liu, Z. Active vibration control of thin-walled milling based on ANFIS parameter optimization. Int. J. Adv. Manuf. Technol. 2021, 114, 563–577. [Google Scholar] [CrossRef]
- Qiu, Z.-C.; Han, J.-D.; Zhang, X.-M.; Wang, Y.-C.; Wu, Z.-W. Active Vibration Control of a Flexible Beam Using a Non-Collocated Acceleration Sensor and Piezoelectric Patch Actuator. J. Sound Vib. 2009, 326, 438–455. [Google Scholar] [CrossRef] [Green Version]
- Bruant, I.; Gallimard, L.; Nikoukar, S. Optimal Piezoelectric Actuator and Sensor Location for Active Vibration Control, Using Genetic Algorithm. J. Sound Vib. 2010, 329, 1615–1635. [Google Scholar] [CrossRef] [Green Version]
- Roy, T.; Chakraborty, D. Optimal Vibration Control of Smart Fiber Reinforced Composite Shell Structures Using Improved Genetic Algorithm. J. Sound Vib. 2009, 319, 15–40. [Google Scholar] [CrossRef]
- Diez, E.; Perez, H.; Marquez, J.; Vizan, A. Feasibility Study of In-Process Compensation of Deformations in Flexible Milling. Int. J. Mach. Tools Manuf. 2015, 94, 1–14. [Google Scholar] [CrossRef]
- Diez, E.; Leal-Muñoz, E.; Perez, H.; Vizan, A. Dynamic Analysis of a Piezoelectric System to Compensate for Workpiece Deformations in Flexible Milling. Mech. Syst. Signal Process. 2017, 91, 278–294. [Google Scholar] [CrossRef]
- Elfizy, A.T.; Bone, G.M.; Elbestawi, M.A. Design and control of a dual-stage feed drive. Int. J. Mach. Tools Manuf. 2005, 45, 153–165. [Google Scholar] [CrossRef]
- Abele, E.; Hanselka, H.; Haase, F.; Schlote, D.; Schiffler, A. Development and design of an active work piece holder driven by piezo actuators. Prod. Eng. 2008, 2, 437–442. [Google Scholar] [CrossRef]
- Kianinejad, K.; Thom, S.; Kushwaha, S.; Uhlmann, E. Add-on Error Compensation Unit as Sustainable Solution for Outdated Milling Machines. Procedia CIRP 2016, 40, 174–178. [Google Scholar] [CrossRef] [Green Version]
- Sallese, L.; Scippa, A.; Grossi, N.; Campatelli, G. Investigating Actuation Strategies in Active Fixtures for Chatter Suppression. Procedia CIRP 2016, 46, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Rashid, A.; Nicolescu, C.M. Active Vibration Control in Palletised Workholding System for Milling. Int. J. Mach. Tools Manuf. 2006, 46, 1626–1636. [Google Scholar] [CrossRef]
- Brecher, C.; Manoharan, D.; Ladra, U.; Köpken, H.-G. Chatter Suppression with an Active Workpiece Holder. Prod. Eng. 2010, 4, 239–245. [Google Scholar] [CrossRef]
- Parus, A.; Bodnar, A.; Marchelek, K.; Chodzko, M. Using of Active Clamping Device for Workpiece Vibration Suppression. J. Vib. Eng. Technol. 2015, 3, 161–167. [Google Scholar]
- Parus, A.; Powałka, B.; Marchelek, K.; Domek, S.; Hoffmann, M. Active vibration control in milling flexible workpieces. JVC J. Vib. Control 2013, 19, 1103–1120. [Google Scholar] [CrossRef]
- Diez Cifuentes, E.; Pérez García, H.; Guzmán Villaseñor, M.; Vizán Idoipe, A. Dynamic analysis of runout correction in milling. Int. J. Mach. Tools Manuf. 2010, 50, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Sallese, L.; Grossi, N.; Tsahalis, J.; Scippa, A.; Campatelli, G. Intelligent Fixtures for Active Chatter Control in Milling. Procedia CIRP 2016, 55, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Khajoee, M.; Moradi, H. A PID Controller Design to Suppress Chatter Vibrations in the Turning Process & Studying Its Effect in Nonlinear Delayed Process. In Proceedings of the 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 5–7 July 2021; pp. 1–4. [Google Scholar]
- Tseng, K.H.; Lin, Y.S.; Chang, C.Y.; Chung, M.Y. A Study of a PID Controller Used in a Microelectrical Discharge Machining System to Prepare TiO2 Nanocolloids. Nanomaterials 2020, 10, 1044. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Liu, Y.; Chen, W.; Zhang, S.; Deng, J. Fast and Precise Control for the Vibration Amplitude of an Ultrasonic Transducer Based on Fuzzy PID Control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2766–2774. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, H.; Zhang, P. The Position Control of Machine Tool Based on Fuzzy Adaptive PID Control. In Proceedings of the 2019 IEEE 8th International Conference on Fluid Power and Mechatronics (FPM), Wuhan, China, 10–13 April 2019; pp. 842–847. [Google Scholar]
- Ebadi, Y.; Moradi, H. Using a Combination of Vibration Absorber and a Classical Active Controller to Suppress the Chatter Vibration and Increase the Stability in Turning Process. In Proceedings of the 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 5–7 July 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, D.; Yu, C.W. Dynamic Modeling of a Novel Workpiece Table for Active Surface Grinding Control. Int. J. Mach. Tools Manuf. 2001, 41, 609–624. [Google Scholar] [CrossRef]
- Zhang, D.; Chetwynd, D.; Liu, X.; Tian, Y. Investigation of a 3-DOF Micro-Positioning Table for Surface Grinding. Int. J. Mech. Sci. 2006, 48, 1401–1408. [Google Scholar] [CrossRef]
- Yan, G.F.; Fang, H.; Meng, F. High-accuracy tracking of piezoelectric positioning stage by using iterative learning controller plus PI control. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 406. [Google Scholar] [CrossRef]
- He, Y.; Chen, X.; Liu, Z.; Chen, Y. Active Vibration Control of Motorized Spindle Based on Mixed H∞/Kalman Filter Robust State Feedback Control. J. Vib. Control 2019, 25, 1279–1293. [Google Scholar] [CrossRef]
- IEEE Standard on Piezoelectricity. In ANSI/IEEE Std 176-1987; IEEE: New York, NY, USA, 1988. [CrossRef]
- Moheimani, S.R.; Fleming, A.J. Piezoelectric Transducers for Vibration Control and Damping; Advances in Industrial Control; Springer: London, UK, 2006. [Google Scholar]
Controller | Kp | Ti | Td | N | Tt | b | c |
---|---|---|---|---|---|---|---|
Set Point Following | 0.1 | 1.6190 × 10−5 | 0.0012 | 768.4436 | 1.3938 × 10−4 | 0.8 | 0.0 |
Disturbance Rejection | 40.0 | 1.0 | 1.0 |
Input [Amplitude|Frequency|Phase] | Open Loop | Closed Loop | Containment |
---|---|---|---|
A, B, C: [±1500 N|1130 Hz|0] | EA,B,C: ±12.28 μm | EA,B,C: ±1.23 μm | A,B,C: 89.98% |
A: [±1500 N|1130 Hz|π/2] | EA: ±31.48 μm | EA: ±1.32 μm | A: 95.81% |
B: [±1500 N|1130 Hz|π] | EB: ±52.46 μm | EB: ±1.36 μm | B: 97.41% |
C: [±1500 N|1130 Hz|0] | EC: ±44.71 μm | EC: ±1.37 μm | C: 96.93% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggogeri, F.; Pellegrini, N.; Tagliani, F.L. Extended PKM Fixturing System for Micro-Positioning and Vibration Rejection in Machining Application. Sensors 2021, 21, 7739. https://doi.org/10.3390/s21227739
Aggogeri F, Pellegrini N, Tagliani FL. Extended PKM Fixturing System for Micro-Positioning and Vibration Rejection in Machining Application. Sensors. 2021; 21(22):7739. https://doi.org/10.3390/s21227739
Chicago/Turabian StyleAggogeri, Francesco, Nicola Pellegrini, and Franco Luis Tagliani. 2021. "Extended PKM Fixturing System for Micro-Positioning and Vibration Rejection in Machining Application" Sensors 21, no. 22: 7739. https://doi.org/10.3390/s21227739
APA StyleAggogeri, F., Pellegrini, N., & Tagliani, F. L. (2021). Extended PKM Fixturing System for Micro-Positioning and Vibration Rejection in Machining Application. Sensors, 21(22), 7739. https://doi.org/10.3390/s21227739