Modelling of SEPIC, Ćuk and Zeta Converters in Discontinuous Conduction Mode and Performance Evaluation
<p>High-order converters: (<b>a</b>) SEPIC, (<b>b</b>) Ćuk, (<b>c</b>) Zeta.</p> "> Figure 2
<p>SEPIC converter circuits on DCM operation: (<b>a</b>) MOSFET ON, diode OFF, (<b>b</b>) MOSFET OFF, diode ON, (<b>c</b>) MOSFET OFF, diode OFF.</p> "> Figure 3
<p>Responses in inductor currents: (<b>a</b>) dynamic response for inductor currents, (<b>b</b>) current transient with positive slope, (<b>c</b>) current transient with negative slope, (<b>d</b>) currents in steady state.</p> "> Figure 4
<p>Relation between inductor and diode currents in steady state: (<b>a</b>) inductor currents, (<b>b</b>) diode current.</p> "> Figure 5
<p>Operation zones of high-order converters.</p> "> Figure 6
<p>Comparison results in Ćuk converter without coupled inductors: (<b>a</b>) inductor currents, (<b>b</b>) capacitor voltages.</p> "> Figure 7
<p>Comparison results for capacitor voltages in SEPIC converter with positive magnetic coupling, (A) without damping network, (B) with damping network: (<b>a</b>) switched model, (<b>b</b>) theoretical model.</p> "> Figure 8
<p>Comparison results for capacitor voltages in Zeta converter with negative magnetic coupling: (<b>a</b>,<b>b</b>) intermediate capacitor voltage (<math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>1</mn> </msub> </msub> </semantics></math>), (<b>c</b>,<b>d</b>) output capacitor voltage (<math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> </semantics></math>), (<b>e</b>,<b>f</b>) inductor current, (<b>a</b>,<b>c</b>,<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math><math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>F, (<b>b</b>,<b>d</b>,<b>f</b>)<math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math><math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>F.</p> "> Figure 9
<p>Hardware-in-the-loop experimental setup: (<b>a</b>) oscilloscope, (<b>b</b>) PLECS RT-box 1, (<b>c</b>) Texas Instruments LAUNCHXL-F28069M, (<b>d</b>) RT Box LaunchPad Interface.</p> "> Figure 10
<p>HIL test to validate the proposed model and the simulation of the switched model using PSIM by the Ćuk converter without coupled inductors shown in <a href="#sensors-21-07434-f006" class="html-fig">Figure 6</a>. CH1: <math display="inline"><semantics> <msub> <mi>i</mi> <msub> <mi>l</mi> <mn>1</mn> </msub> </msub> </semantics></math> (1 A/div), CH2: <math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> </semantics></math> (10 V/div), CH3: <math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>1</mn> </msub> </msub> </semantics></math> (10 V/div), CH4: <math display="inline"><semantics> <mrow> <mo>−</mo> <msub> <mi>i</mi> <msub> <mi>l</mi> <mn>2</mn> </msub> </msub> </mrow> </semantics></math> (1 A/div), and time base of 1 ms.</p> "> Figure 11
<p>HIL test to validate the proposed model and the simulation of the switched model using PSIM by the SEPIC converter with positive magnetic coupling shown in <a href="#sensors-21-07434-f007" class="html-fig">Figure 7</a>: (<b>a</b>) without damping network, (<b>b</b>) with damping network. (CH2: <math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> </semantics></math> (2 V/div), CH3: <math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>1</mn> </msub> </msub> </semantics></math> (2 V/div), and time base of 4 ms).</p> "> Figure 12
<p>HIL test to validate the proposed model and the simulation of the switched model using PSIM by the Zeta converter with negative magnetic coupling shown in <a href="#sensors-21-07434-f008" class="html-fig">Figure 8</a>: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math><math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>F, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math><math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>F. CH1: <math display="inline"><semantics> <msub> <mi>i</mi> <msub> <mi>l</mi> <mn>1</mn> </msub> </msub> </semantics></math> (4 A/div), CH2: <math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> </semantics></math> (1 V/div, ac coupling), CH3: <math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>1</mn> </msub> </msub> </semantics></math> (10 V/div, ac coupling), CH4: <math display="inline"><semantics> <mrow> <mo>−</mo> <msub> <mi>i</mi> <msub> <mi>l</mi> <mn>2</mn> </msub> </msub> </mrow> </semantics></math> (4 A/div), and time base of 4 ms.</p> "> Figure 13
<p>Arrangement to obtain the inductors with magnetic coupling: (<b>a</b>) interconnections between inductors, (<b>b</b>) equivalent coupled inductors.</p> "> Figure 14
<p>Experimental setup: (<b>a</b>) reconfigurable power converter, (<b>b</b>) digital signal controller, (<b>c</b>) input dc power supply, (<b>d</b>) dc electronic load in constant resistance mode of <math display="inline"><semantics> <mrow> <mn>100</mn> <mspace width="3.33333pt"/> <mi mathvariant="sans-serif">Ω</mi> </mrow> </semantics></math>, (<b>e</b>) oscilloscope, (<b>f</b>) auxiliary power supply, (<b>g</b>) voltage differential probes, (<b>h</b>) current probes, (<b>i</b>) power supply for the current probes.</p> "> Figure 15
<p>Experimental results for the Ćuk converter without coupled inductors which validate HIL results showed in <a href="#sensors-21-07434-f010" class="html-fig">Figure 10</a>. CH1: <math display="inline"><semantics> <msub> <mi>i</mi> <msub> <mi>l</mi> <mn>1</mn> </msub> </msub> </semantics></math> (1 A/div), CH2: <math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> </semantics></math> (10 V/div), CH3: <math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>1</mn> </msub> </msub> </semantics></math> (10 V/div), CH4: <math display="inline"><semantics> <mrow> <mo>−</mo> <msub> <mi>i</mi> <msub> <mi>l</mi> <mn>2</mn> </msub> </msub> </mrow> </semantics></math> (1 A/div), and time base of 1 ms.</p> "> Figure 16
<p>Experimental results for the SEPIC converter with positive magnetic coupling which demonstrate good agreement with HIL results showed in <a href="#sensors-21-07434-f011" class="html-fig">Figure 11</a>: (<b>a</b>) without damping network, (<b>b</b>) with damping network. (CH2: <math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> </semantics></math> (2 V/div), CH3: <math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>1</mn> </msub> </msub> </semantics></math> (2 V/div), and time base of 500 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>s).</p> "> Figure 17
<p>Experimental results for the Zeta converter with negative magnetic coupling which validate HIL results showed in <a href="#sensors-21-07434-f012" class="html-fig">Figure 12</a>: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math><math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>F, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math><math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>F. CH1: <math display="inline"><semantics> <msub> <mi>i</mi> <msub> <mi>l</mi> <mn>1</mn> </msub> </msub> </semantics></math> (4 A/div), CH2: <math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> </semantics></math> (1 V/div, ac coupling), CH3: <math display="inline"><semantics> <msub> <mi>v</mi> <msub> <mi>C</mi> <mn>1</mn> </msub> </msub> </semantics></math> (10 V/div, ac coupling), CH4: <math display="inline"><semantics> <mrow> <mo>−</mo> <msub> <mi>i</mi> <msub> <mi>l</mi> <mn>2</mn> </msub> </msub> </mrow> </semantics></math> (4 A/div), and time base of 4 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>s.</p> "> Figure 18
<p>Frequency response of theoretical and switched models for: (<b>a</b>) <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <msub> <mover accent="true"> <mi>i</mi> <mo>^</mo> </mover> <msub> <mi>L</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mover accent="true"> <mi>v</mi> <mo>^</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mstyle> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <msub> <mover accent="true"> <mi>i</mi> <mo>^</mo> </mover> <msub> <mi>L</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mover accent="true"> <mi>d</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mstyle> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <msub> <mover accent="true"> <mi>v</mi> <mo>^</mo> </mover> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mover accent="true"> <mi>v</mi> <mo>^</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mstyle> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <msub> <mover accent="true"> <mi>v</mi> <mo>^</mo> </mover> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mover accent="true"> <mi>d</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mstyle> </semantics></math>.</p> "> Figure 19
<p>Frequency response comparison: (<b>a</b>) <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <msub> <mover accent="true"> <mi>v</mi> <mo>^</mo> </mover> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mover accent="true"> <mi>v</mi> <mo>^</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mstyle> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <msub> <mover accent="true"> <mi>v</mi> <mo>^</mo> </mover> <msub> <mi>C</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mover accent="true"> <mi>d</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mstyle> </semantics></math>.</p> ">
Abstract
:1. Introduction
- Because it is based in simple graphical representations of inductor’s and diode current waveforms it is easy to understand and apply;
- Provides a full-order model that can be particularized to any of the three high-order step up/down switching converters with or without positive/negative magnetic coupling between inductors and damping networks in the intermediate capacitor;
- The three converters and its variants can be analyzed in the classical forms depicted in Figure 1, where the MOSFET and diode do not share any common node. To apply Vorperian’s method, which also provides full-order models, the structures of two of the converters must be modified to a “common–common” configuration of the DCM switch.
2. Modeling in Discontinuous Mode of SEPIC, Ćuk and Zeta Converters
- Ideal no-losses components, without parasitics;
- Constant switching frequency and period T;
- Capacitors large enough so that their average voltages can be considered approximately constant through a switching cycle and small voltage ripple amplitudes.
2.1. Analysis and Modeling of SEPIC Converter in DCM
2.2. Nonlinear Model of Average Values Based on a Graphical Method for the SEPIC Converter in DCM
2.3. Steady State Operating Point of the SEPIC Converter in DCM
2.4. Generalized Model
2.4.1. Full-Order Dynamic Model
2.4.2. Steady State Operation Point
2.4.3. Boundary between Continuous and Discontinuous Conduction Mode
2.4.4. Linearized Model
3. Results
- Theoretical results: these are results in the time or frequency domains obtained from the transfer functions of the small-signal models;
- Switched results: they are obtained from simulations in the PSIM software;
- Hardware-in-the-loop results: measurements carried out on the hardware-in-the-loop tools (PLECS RT-box 1, Interface and Texas Instruments LAUNCHXL-F28069M);
- Experimental results: direct measurements in a real proof-of-concept reconfigurable prototype of high-order converters.
3.1. Component Description
- Test-1: Base set formed by coupled inductors , with mutual inductance M, capacitors and and a load resistor R;
- Test-2: Corresponds with Test-1 but with damping network;
- Test-3: Corresponds with Test-1 with an intermediate capacitor reduced ten times. This test has been defined to study the proposed model under a high voltage ripple condition.
3.2. Operation Points
3.3. Transfer Functions
3.4. Time Domain Responses
3.4.1. Small Signal Response
3.4.2. Damping Network Effect
3.4.3. Non-Fulfillment of Design Criteria
3.4.4. HIL Validation
- A TI 28069M LaunchPad;
- An RT Box LaunchPad Interface;
- A laptop with the PLECS software;
- An oscilloscope Keysight MSOX2014A,
3.4.5. Experimental Results
- Coupled inductors: the arrangement to obtain the inductors with magnetic coupling consist of two perfectly magnetic coupled inductors of H with two external inductors of H. The result is two coupled inductors with a mutual inductance of H and equal self inductance of H. The inductors arrangement and its equivalent circuit are shown in Figure 13;
- Non-coupled inductors: it is a series arrangement of inductors of 47 H and H;
- Intermediate capacitor F: 5 capacitors of 100 nF connected in parallel;
- Intermediate capacitor 5 F: 2 capacitors of 10 F connected in series;
- Damping network capacitor 50 F: 5 capacitors of 10 F connected in parallel.
3.5. Frequency Domain Responses
3.6. Frequency Domain Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CCM | Continuous Conduction Mode |
DCM | Discontinuous Conduction Mode |
HIL | Hardware In The Loop |
PFC | Power Factor Correction |
SEPIC | Single-Ended Primary-Inductor Converter |
References
- Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics, 3rd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Cuk, S.; Middlebrook, R. A general unified approach to modelling switching DC-to-DC converters in discontinuous conduction mode. In Proceedings of the 1977 IEEE Power Electronics Specialists Conference, Palo Alto, CA, USA, 14–16 June 1977; pp. 36–57. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Mitchell, D.; Greuel, M.; Krein, P.; Bass, R. Averaged modeling of PWM converters operating in discontinuous conduction mode. IEEE Trans. Power Electron. 2001, 16, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Khaligh, A.; Wang, H. Interleaved SEPIC power factor preregulator using coupled inductors in discontinuous conduction mode with wide output voltage. IEEE Trans. Ind. Appl. 2016, 52, 3461–3471. [Google Scholar] [CrossRef]
- Maksimovic, D.; Cuk, S. A unified analysis of PWM converters in discontinuous modes. IEEE Trans. Power Electron. 1991, 6, 476–490. [Google Scholar] [CrossRef] [Green Version]
- Vorperian, V. Simplified analysis of PWM converters using model of PWM switch. II. Discontinuous conduction mode. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 497–505. [Google Scholar] [CrossRef]
- Granza, M.H.; Gules, R.; Illa Font, C.H. Hybrid and Three-Level Three-Phase Rectifiers Using Interleaved DCM Boost Converters. IEEE Access 2019, 7, 160168–160176. [Google Scholar] [CrossRef]
- Ma, J.; Wei, X.; Hu, L.; Zhang, J. LED Driver Based on Boost Circuit and LLC Converter. IEEE Access 2018, 6, 49588–49600. [Google Scholar] [CrossRef]
- Lee, Y.J.; Niou, C.P.; Chen, C.Y.; Tsai, C.H. A Digital Power Factor Controller for Primary-Side-Regulated LED Driver. IEEE Access 2020, 8, 21813–21822. [Google Scholar] [CrossRef]
- Simonetti, D.; Sebastion, J.; Uceda, J. The discontinuous conduction mode Sepic and Cuk power factor preregulators: Analysis and design. IEEE Trans. Ind. Electron. 1997, 44, 630–637. [Google Scholar] [CrossRef] [Green Version]
- Tibola, G.; Barbi, I. Isolated Three-Phase High Power Factor Rectifier Based on the SEPIC Converter Operating in Discontinuous Conduction Mode. IEEE Trans. Power Electron. 2013, 28, 4962–4969. [Google Scholar] [CrossRef]
- Viero, R.C.; Lopez, H.F.M.; Zollmann, C.A.; dos Reis, F.S. Dynamic modeling of a sinusoidal inverter based on ZETA converter working in DCM for PV arrays. In Proceedings of the IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 439–444. [Google Scholar] [CrossRef]
- Schenk, K.; Cuk, S. Small signal analysis of converters with multiple discontinuous conduction modes. In Proceedings of the PESC 98 Record, 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), Fukuoka, Japan, 22 May 1998; Volume 1, pp. 623–629. [Google Scholar] [CrossRef]
- De Vicuna, L.G.; Guinjoan, F.; Majo, J.; Martinez, L. Discontinuous conduction mode in the SEPIC converter. In Proceedings of the Electrotechnical Conference Integrating Research, Industry and Education in Energy and Communication Engineering, Lisbon, Portugal, 11–13 April 1989; pp. 38–42. [Google Scholar] [CrossRef]
- Sabzali, A.J.; Ismail, E.H.; Al-Saffar, M.A.; Fardoun, A.A. New Bridgeless DCM Sepic and Cuk PFC Rectifiers With Low Conduction and Switching Losses. IEEE Trans. Ind. Appl. 2011, 47, 873–881. [Google Scholar] [CrossRef]
- Bianchin, C.G.; Gules, R.; Badin, A.A.; Ribeiro Romaneli, E.F. High-Power-Factor Rectifier Using the Modified SEPIC Converter Operating in Discontinuous Conduction Mode. IEEE Trans. Power Electron. 2015, 30, 4349–4364. [Google Scholar] [CrossRef]
- Costa, P.J.S.; Illa Font, C.H.; Lazzarin, T.B. Single-Phase Hybrid Switched-Capacitor Voltage-Doubler SEPIC PFC Rectifiers. IEEE Trans. Power Electron. 2018, 33, 5118–5130. [Google Scholar] [CrossRef]
- Maroti, P.K.; Padmanaban, S.; Holm-Nielsen, J.B.; Sagar Bhaskar, M.; Meraj, M.; Iqbal, A. A New Structure of High Voltage Gain SEPIC Converter for Renewable Energy Applications. IEEE Access 2019, 7, 89857–89868. [Google Scholar] [CrossRef]
- Fardoun, A.A.; Ismail, E.H.; Sabzali, A.J.; Al-Saffar, M.A. New Efficient Bridgeless Cuk Rectifiers for PFC Applications. IEEE Trans. Power Electron. 2012, 27, 3292–3301. [Google Scholar] [CrossRef]
- Yang, H.; Chiang, H.; Chen, C. Implementation of Bridgeless Cuk Power Factor Corrector With Positive Output Voltage. IEEE Trans. Ind. Appl. 2015, 51, 3325–3333. [Google Scholar] [CrossRef]
- Bist, V.; Singh, B. PFC Cuk Converter-Fed BLDC Motor Drive. IEEE Trans. Power Electron. 2015, 30, 871–887. [Google Scholar] [CrossRef]
- Anand, A.; Singh, B. Power Factor Correction in Cuk–SEPIC-Based Dual-Output-Converter-Fed SRM Drive. IEEE Trans. Ind. Electron. 2018, 65, 1117–1127. [Google Scholar] [CrossRef]
- Shawky, A.; Takeshita, T.; Sayed, M.A. Single-Stage Three-Phase Grid-Tied Isolated SEPIC-Based Differential Inverter With Improved Control and Selective Harmonic Compensation. IEEE Access 2020, 8, 147407–147421. [Google Scholar] [CrossRef]
- Viero, R.C.; dos Reis, F.S. Dynamic modeling of a ZETA converter in DCM applied to low power renewable sources. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 685–691. [Google Scholar]
- Callegaro, A.D.; Martins, D.C.; Barbi, I. Isolated single-phase high power factor rectifier using Zeta converter operating in DCM with non-dissipative snubber. In Proceedings of the 2013 Brazilian Power Electronics Conference, Gramado, Brazil, 27–31 October 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Kushwaha, R.; Singh, B. UPF-isolated zeta converter-based battery charger for electric vehicle. IET Electr. Syst. Transp. 2019, 9, 103–112. [Google Scholar] [CrossRef]
- Eng, V.; Bunlaksananusorn, C. Modeling of a SEPIC converter operating in Discontinuous Conduction Mode. In Proceedings of the 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Chonburi, Thailand, 6–9 May 2009; Volume 1, pp. 140–143. [Google Scholar] [CrossRef]
- Arango, E.; Ramos-Paja, C.A.; Giral, R.; Serna, S.; Petrone, G. Modeling and Control of Ćuk Converter Operating in DCM. In Electrical Engineering and Control; Zhu, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 98, pp. 441–449. [Google Scholar] [CrossRef]
- Niculescu, E.; Niculescu, M.C.; Purcaru, D.M. Modelling the PWM Zeta converter in discontinuous conduction mode. In Proceedings of the MELECON 2008—The 14th IEEE Mediterranean Electrotechnical Conference, Ajaccio, France, 5–7 May 2008; pp. 651–657. [Google Scholar] [CrossRef]
- Arango, E. Modelling and Control of an Asymmetric Interleaved DC to DC Switching Converter. Ph.D. Thesis, Departament d’Enginyeria Electrónica Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona, Spain, 2009. [Google Scholar]
- Coilcraft. MSC1278 Series Coupled SEPIC Inductors. Available online: https://www.coilcraft.com/en-us/products/power/coupled-inductors/1-1-shielded-loosely-coupled/msc/msc1278/ (accessed on 19 November 2020).
- Restrepo, C.; Calvente, J.; Cid-Pastor, A.; Aroudi, A.E.; Giral, R. A Noninverting Buck–Boost DC–DC Switching Converter With High Efficiency and Wide Bandwidth. IEEE Trans. Power Electron. 2011, 26, 2490–2503. [Google Scholar] [CrossRef]
- Song, J.; Jung, S.; Lee, J.; Shin, J.; Jang, G. Dynamic performance testing and implementation for static var compensator controller via hardware-in-the-loop simulation under large-scale power system with real-time simulators. Simul. Model. Pract. Theory 2021, 106, 102191. [Google Scholar] [CrossRef]
Slope | Equation |
---|---|
Slope | SEPIC | Ćuk | Zeta |
---|---|---|---|
. |
Parameter | Test-1 | Test-2 | Test-3 |
---|---|---|---|
[H] | |||
[H] | |||
M [H] | |||
[F] | |||
[F] | |||
[F] | − | − | |
[] | − | − | |
R [] |
Parameter | Ćuk () | SEPIC () | Zeta () |
---|---|---|---|
[A] | |||
[A] | |||
[V] | |||
[V] | |||
[-] | |||
[A] | |||
k [-] |
Description | Transfer Function |
---|---|
Ćuk (, Test-1) | |
Description | Transfer Function |
---|---|
SEPIC (, Test-1) | |
SEPIC (, Test-2) | |
Description | Transfer Function |
---|---|
Zeta (, Test-1) | |
Zeta (, Test-3) | |
Model | [A] | [A] | [V] | [V] | |
---|---|---|---|---|---|
Switched | |||||
9 V | Theoretical | ||||
RE [%] | |||||
Switched | |||||
10 V | Theoretical | ||||
RE [%] |
Component | Description | Type |
---|---|---|
S | Power MOSFET | IRFB4510PBF |
Inductor | Coilcraft’s Hexa-Path HPH4-0140L, H | |
Inductor | Wurth Elektronik 7443551920, H | |
Inductor | Wurth Elektronik 74435584700, 47 H | |
(Test 1, 2) | Multilayer Ceramic Capacitor | TDK C5750X7S2A106M230KB, 2 × F |
(Test 3) | Multilayer Ceramic Capacitor | Murata GRM31C2C1H104JA01L, 5 × 100 nF |
(Test 1, 2, 3) | Multilayer Ceramic Capacitor | TDK C5750X7S2A106M230KB, 2 × F |
(Test 2) | Multilayer Ceramic Capacitor | TDK C5750X7S2A106M230KB, 5 × F |
(Test 2) | Damping Resistor | Panasonic ERX5SJ1R5, , 5 W |
Description | Transfer Function |
---|---|
Theoretical proposed | |
Theoretical [29] | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrid, E.; Murillo-Yarce, D.; Restrepo, C.; Muñoz, J.; Giral, R. Modelling of SEPIC, Ćuk and Zeta Converters in Discontinuous Conduction Mode and Performance Evaluation. Sensors 2021, 21, 7434. https://doi.org/10.3390/s21227434
Madrid E, Murillo-Yarce D, Restrepo C, Muñoz J, Giral R. Modelling of SEPIC, Ćuk and Zeta Converters in Discontinuous Conduction Mode and Performance Evaluation. Sensors. 2021; 21(22):7434. https://doi.org/10.3390/s21227434
Chicago/Turabian StyleMadrid, Emerson, Duberney Murillo-Yarce, Carlos Restrepo, Javier Muñoz, and Roberto Giral. 2021. "Modelling of SEPIC, Ćuk and Zeta Converters in Discontinuous Conduction Mode and Performance Evaluation" Sensors 21, no. 22: 7434. https://doi.org/10.3390/s21227434
APA StyleMadrid, E., Murillo-Yarce, D., Restrepo, C., Muñoz, J., & Giral, R. (2021). Modelling of SEPIC, Ćuk and Zeta Converters in Discontinuous Conduction Mode and Performance Evaluation. Sensors, 21(22), 7434. https://doi.org/10.3390/s21227434