Automatic Detection of K-Complexes Using the Cohen Class Recursiveness and Reallocation Method and Deep Neural Networks with EEG Signals
<p>The architecture of the proposed method for the detection of K-complex brain waves.</p> "> Figure 2
<p>Sleep stage [<a href="#B49-sensors-21-07230" class="html-bibr">49</a>].</p> "> Figure 3
<p>Brain waves: K-complex and sleep spindle [<a href="#B49-sensors-21-07230" class="html-bibr">49</a>].</p> "> Figure 4
<p>Waveforms characteristic of the K-complex and delta waves that occur during sleep [<a href="#B49-sensors-21-07230" class="html-bibr">49</a>].</p> "> Figure 5
<p>The pseudo-Wigner–Ville representation of the test signal.</p> "> Figure 6
<p>Born–Jordan representation of the test signal.</p> "> Figure 7
<p>Choi–Williams representation of the test signal.</p> "> Figure 8
<p>Zao–Mark–Atlas representation of test signal.</p> "> Figure 9
<p>STFT spectrogram of the test signal.</p> "> Figure 10
<p>Estimation of time gain by using recursive calculation applied to the classical method for evaluating the re-allocated pseudo-Wigner–Ville distribution. Different time windows <span class="html-italic">h</span> are analyzed: rectangular (●), semi-sinusoidal (■), Hamming, and Hanning (♦). (<b>a</b>) Temporal window <span class="html-italic">h</span> of semilength <span class="html-italic">l</span> that is set at 64. (<b>b</b><span class="html-italic">)</span> Frequency window <span class="html-italic">g</span> with semilength M set at 32.</p> "> Figure 11
<p>Algorithm with recursive strategy for the evaluation of the reallocated pseudo-Wigner–Ville distribution.</p> "> Figure 12
<p>Illustration of underfitting and overfitting.</p> ">
Abstract
:1. Introduction
- How to choose the pattern/model of detection?
- What are the optimal criteria for determining the characteristic parameters of this model? What optimization procedure is being adopted?
2. Materials and Methods
2.1. Proposed Methods
2.2. Microstructure of Sleep EEG
- Stage 1: In this stage, we have smooth sleep: we easily pass from the waking state to the sleep state and can be awakened by even the slightest noise. Our eyes move very slowly and muscle activity slows down. We also experience sudden, involuntary muscle contractions called myoclonus, often preceded by a feeling of falling into emptiness. People awakened from this stage often remember fragmented visual images.
- Stage 2: When we enter the second stage of sleep, eye movements stop, the heart begins to beat slower, the muscles relax, and the body temperature drops. Also, brain waves (fluctuations in electrical activity, which can be measured by electrodes) become slower and a series of occasional fast waves called sleep spindles appear. Basically, the body prepares for deep sleep.
- Stage 3: Stage 3 of sleep is characterized by extremely slow brain waves and the lack of any eye movement or muscle spasms, which promotes deep sleep. Once we reach this stage, it is very difficult to wake up. People awakened during deep sleep do not immediately adapt to reality and, for a few minutes, are dizzy and disoriented.
- Stage 4: In this stage, the heart rate, breathing, and eye movements become faster and faster. The brain becomes more active, processing the things we learned during the day to help us form memories. Usually, during REM (Rapid Eye Movement) sleep, people dream; that is why those who are awakened at this stage often tell bizarre and illogical stories of what they experienced.
- (1)
- REM (rapid eye movement);
- (2)
- non-REM, with four depth stages, 1, 2, 3, and 4.
2.3. Comparative Analysis of Cohen Class Energy Distributions
- of all the time–frequency distributions investigated, the spectrogram provides the temporal resolution at the lowest frequency and the Zao–Mark–Atlas distribution features the smallest amplitude;
- the Choi–Williams distribution is positive and has the largest amplitude;
- the Born–Jordan distribution features almost no secondary lobes;
- the choice of analytical windows (Blackman, Hanning, Hamming, Bartlett, or rectangular) influences the temporal and frequency resolutions as well as secondary lobe levels.
- the energy structure of the analyzed signals may be fairly accurately identified and located in the time–frequency plane;
- when the type, duration, frequency, and timing of signals are not known in advance, they may be estimated by using time–frequency distributions;
- one can thus foresee the possibility of implementing these analytical algorithms in the systems for identifying the EEG transient signals;
- even in the case of signals covering the same spectral range, generated by different sources, the time–frequency distributions allow each of them to be highlighted;
- one may set up databases that are useful for identifying EEG transient signals as their “signature” can be individualized by using time–frequency representations.
2.4. Recursive Implementation of Cohen Representations
- (a)
- Pseudo-Wigner–Ville reallocated distributions (Recursiveness and reallocation operators)
- (b)
- Performances
2.5. Deep Neuronal Network
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alger, S.E.; Chambers, A.M.; Cunningham, T.; Payne, J.D. The role of sleep in human declarative memory consolidation. Sleep Neuronal Plast. Brain Funct. 2014, 25, 269–306. [Google Scholar] [CrossRef]
- What Is Sleep? American Sleep Association. 2016. Available online: https://www.sleepassociation.org/patients-general-public/what-is-sleep/ (accessed on 23 September 2021).
- Rechtschaffen, A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Public Health Serv. 1969, 20, 246–247. [Google Scholar]
- Moser, D.; Anderer, P.; Gruber, G.; Parapatics, S.; Loretz, E.; Boeck, M.; Kloesch, G.; Heller, E.; Schmidt, A.; Danker-Hopfe, H.; et al. Sleep Classification According to AASM and Rechtschaffen & Kales: Effects on Sleep Scoring Parameters. Sleep 2009, 32, 139–149. [Google Scholar] [PubMed]
- Fletcher, J. Why Sleep is Essential for Health? Available online: https://www.medicalnewstoday.com/articles/325353/ (accessed on 25 August 2021).
- American Academy of Sleep Medicine. International Classification of Sleep Disorders. 2005, p. 51. Available online: https://ci.nii.ac.jp/naid/20001061569/ (accessed on 13 August 2021).
- Thorpy, M.J. Classification of sleep disorders. Neurotherapeutics 2012, 9, 687–701. [Google Scholar] [CrossRef]
- Sharma, M.; Dhiman, H.S.; Acharya, U.R. Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ECG signals. Comput. Biol. Med. 2021, 131, 104246. [Google Scholar]
- Bhattacharya, D.; Sen, M.; Suri, J. Epidemiology of insomnia: A review of the global and Indian scenario. Ind. J. Sleep Med. 2013, 8, 100–110. [Google Scholar] [CrossRef]
- Murali, R.; Rangarajan, P.; Mounissamy, A. Bruxism: Conceptual discussion and review. J. Pharm. Bioallied Sci. 2015, 7, S265. [Google Scholar] [CrossRef]
- Anderson, K.N. An update in sleep neurology: The latest bed time stories. J. Neurol. 2015, 262, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Blagrove, M.; Ruby, P.; Eichenlaub, J.-B. Dreams are made of memories, but may be not formemory. Behav. Brain Sci. 2013, 36, 609–610. [Google Scholar] [CrossRef]
- Al-Salman, W.; Li, Y.; Wen, P.; Diykh, M. An efficient approach for EEG sleep spindles detection based on fractal dimension coupled with time frequency image. Biomed. Signal Process. Control 2018, 41, 210–221. [Google Scholar] [CrossRef]
- Nobili, L.; Proserpio, P.; Combi, R.; Provini, F.; Plazzi, G.; Bisulli, F.; Tassi, L.; Tinuper, P. Nocturnal frontal lobe epilepsy. Curr. Neurol. Neurosci. Rep. 2014, 14, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhardt, B.C.; Bonilha, L.; Gross, D.W. Network analysis for a network disorder: The emerging role of graph theory in the study of epilepsy. Epilepsy Behav. 2015, 50, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, R. Review of periodic limb movement and restless leg syndrome. J. Postgrad. Med. 2010, 56, 157. [Google Scholar] [CrossRef] [PubMed]
- Carskadon, M.A.; Dement, W.C. Monitoring and Staging Human Sleep. In Principles and Practice of Sleep Medicine, 5th ed.; Kryger, M.H., Roth, T., Dement, W.C., Eds.; Elsevier Saunders: St. Louis, MO, USA, 2011; pp. 16–26. [Google Scholar] [CrossRef]
- Bhat, S.; Acharya, U.R.; Hagiwara, Y.; Dadmehr, N.; Adeli, H. Parkinson’s disease: Cause factors, measurable indicators, and early diagnosis. Comput. Biol. Med. 2018, 102, 234–241. [Google Scholar] [CrossRef]
- Politis, M.; Wu, K.; Molloy, S.; Bain, P.G.; Chaudhuri, K.R.; Piccini, P. Parkinson’s disease symptoms: The patient’s perspective. Mov. Disord. 2010, 25, 1646–1651. [Google Scholar] [CrossRef] [PubMed]
- Balestrino, R.; Schapira, A.H.V. Parkinson disease. Eur. J. Neurol. 2020, 27, 27–42. [Google Scholar] [CrossRef]
- Báez-Mendoza, R.; Schultz, W. The role of the striatum in social behavior. Front. Neurosci. 2013, 7, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savitt, J.M.; Dawson, V.L.; Dawson, T.M. Diagnosis and treatment of Parkinson disease: Molecules to medicine. J. Clin. Investig. 2006, 116, 1744–1754. [Google Scholar] [CrossRef] [Green Version]
- Yuvaraj, R.; Murugappan, M.; Acharya, U.R.; Adeli, H.; Ibrahim, N.M.; Mesquita, E. Brain functional connectivity patterns for emotional state classification in Parkinson’s disease patients without dementia. Behav. Brain Res. 2016, 298, 248–260. [Google Scholar] [CrossRef]
- Imbriani, P.; Schirinzi, T.; Meringolo, M.; Mercuri, N.B.; Pisani, A. Centrality of Early Synaptopathy in Parkinson’s Disease. Front. Neurol. 2018, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagano, G.; Niccolini, F.; Politis, M. Imaging in Parkinson’s disease. Clin. Med. 2016, 16, 371–375. [Google Scholar] [CrossRef]
- Orozco, J.L.; Valderrama-Chaparro, J.A.; Pinilla-Monsalve, G.D.; Molina-Echeverry, M.I.; Pérez Castaño, A.M.; Ariza-Araújo, Y.; Prada, S.I.; Takeuchi, Y. Parkinson’s disease prevalence, age distribution and staging in Colombia. Neurol. Int. 2020, 12, 8401. [Google Scholar] [CrossRef]
- Miller, I.N.; Cronin-Golomb, A. Gender differences in Parkinson’s disease: Clinical characteristics and cognition. Mov. Disord. 2010, 25, 2695–2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.V.F.; Loures, C.D.M.G.; Alves, L.C.V.; De Souza, L.C.; Borges, K.B.G.; Carvalho, M.D.G. Alzheimer’s disease: Risk factors and potentially protective measures. J. Biomed. Sci. 2019, 26, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, D.W.; Lee, C.U.; Lim, H.K. Role of Sleep Disturbance in the Trajectory of Alzheimer’s Disease. Clin. Psychopharmacol. Neurosci. 2017, 15, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Cooke, J.R.; Ancoli-Israel, S. Normal and abnormal sleep in the elderly. Handb. Clin. Neurol. 2011, 98, 653–665. [Google Scholar]
- Tatineny, P.; Shafi, F.; Gohar, A.; Bhat, A. Sleep in the elderly. Sci. Med. 2020, 17, 490–495. [Google Scholar]
- Peter-Derex, L.; Yammine, P.; Bastuji, H.; Croisile, B. Sleep and Alzheimer’s disease. Sleep Med. Rev. 2015, 19, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Chwiszczuk, L.; Breitve, M.; Hynninen, M.; Gjerstad, M.D.; Aarsland, D.; Rongve, A. Higher Frequency and Complexity of Sleep Disturbances in Dementia with Lewy Bodies as Compared to Alzheimer’s Disease. Neurodegener. Dis. 2015, 16, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Bagyinszky, E.; Youn, Y.C.; An, S.S.; Kim, S. The genetics of Alzheimer’s disease. Clin. Interv. 2014, 9, 535–551. [Google Scholar] [CrossRef] [Green Version]
- Minakawa, E.N.; Wada, K.; Nagai, Y. Sleep Disturbance as a Potential Modifiable Risk Factor for Alzheimer’s Disease. Int. J. Mol. Sci. 2019, 20, 803. [Google Scholar] [CrossRef] [Green Version]
- Busche, M.A.; Kekuš, M.; Adelsberger, H.; Noda, T.; Förstl, H.; Nelken, I.; Konnerth, A. Rescue of long-range circuit dysfunction in Alzheimer’s disease models. Nat. Neurosci. 2015, 18, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Bedrosian, T.A.; Nelson, R.J. Sundowning syndrome in aging and dementia: Research in mouse models. Exp. Neurol. 2013, 243, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Khare, S.K.; Bajaj, V.; Acharya, U.R. Detection of Parkinson’s disease using automated tunable Q wavelet transform technique with EEG signals. Biocybern. Biomed. Eng. 2021, 41, 679–689. [Google Scholar] [CrossRef]
- Yuvaraj, R.; Acharya, U.R.; Hagiwara, Y. A novel Parkinson’s Disease Diagnosis Index using higher-order spectra features in EEG signals. Neural Comput. Appl. 2018, 30, 1225–1235. [Google Scholar] [CrossRef]
- Sharma, M.; Goyal, D.; Achuth, P.; Acharya, U.R. An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank. Comput. Biol. Med. 2018, 98, 58–75. [Google Scholar] [CrossRef]
- Dhok, S.; Pimpalkhute, V.; Chandurkar, A.; Bhurane, A.A.; Sharma, M.; Acharya, U.R. Automated phase classification in cyclic alternating patterns in sleep stages using Wigner-Ville Distribution based features. Comput. Biol. Med. 2020, 119, 103691. [Google Scholar] [CrossRef]
- Hartmann, S.; Baumert, M. Automatic a-phase detection of cyclic alternating patterns in sleep using dynamic temporal information. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1695–1703. [Google Scholar] [CrossRef]
- Biswal, S.; Sun, H.; Goparaju, B.; Westover, M.B.; Sun, J.; Bianchi, M.T. Expert-level sleep scoring with deep neural networks. J. Am. Med. Inform. Assoc. 2018, 25, 1643–1650. [Google Scholar] [CrossRef] [Green Version]
- Lajnef, T.; Chaibi, S.; Ruby, P.; Aguera, P.-E.; Eichenlaub, J.-B.; Samet, M.; Kachouri, A.; Jerbi, K. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines. J. Neurosci. Methods 2015, 250, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, S.; Baumert, M. Improved A-phase Detection of Cyclic Alternating Pattern Using Deep Learning. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1842–1845. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Yildirim, O.; Baloglu, U.B.; Acharya, U.R. A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals. Int. J. Environ. Res. Public Health 2019, 16, 599. [Google Scholar] [CrossRef] [Green Version]
- Hafezi, M.; Montazeri, N.; Saha, S.; Zhu, K.; Gavrilovic, B.; Yadollahi, A.; Taati, B. Sleep Apnea Severity Estimation from Tracheal Movements Using a Deep Learning Model. IEEE Access 2020, 8, 22641–22649. [Google Scholar] [CrossRef]
- Dumitrescu, C.; COSTEA, I.M.; Nemtanu, F.C.; Stan, V.A.; Gheorghiu, A.R. Application of the Wavelet Transform in Machine-Learning. Univ. Politeh. Buchar. Sci. Bull. Ser. Appl. Math. Phys. 2014, 76, 167–178. [Google Scholar]
- Ozsen, S. Classification of sleep stages using class-dependent sequential feature selection and artificial neural network. Neural Comput. Appl. 2013, 23, 1239–1250. [Google Scholar] [CrossRef]
- Dodge, Y. The Concise Encyclopedia of Statistics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- McHugh, M.L. Lessons in biostatistics. Biochem. Med. 2009, 19, 120–126. [Google Scholar] [CrossRef]
- Litwin, L. FIR and IIR digital filters. IEEE Potentials 2000, 19, 28–31. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Chen, Y.-S.; Chen, L.-F. Automated sleep staging using single EEG channel for REM sleep deprivation. In Proceedings of the Ninth IEEE International Conference on Bioinformatics and Bioengineering, Taichung, Taiwan, 22 June 2009; pp. 439–442. [Google Scholar]
- Cohen, L. Time-Frequency Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1995; Volume 778. [Google Scholar]
- Bhati, D.; Sharma, M.; Pachori, R.B.; Nair, S.S.; Gadre, V.M. Design of Time–Frequency Optimal Three-Band Wavelet Filter Banks with Unit Sobolev Regularity Using Frequency Domain Sampling. Circuits Syst. Signal Process. 2016, 35, 4501–4531. [Google Scholar] [CrossRef]
- Lilly, J.M.; Olhede, S.C. Generalized morse wavelets as a superfamily of analytic wavelets. IEEE Trans. Signal. Process. 2012, 60, 6036–6041. [Google Scholar] [CrossRef] [Green Version]
- Erdamar, A.; Duman, F.; Yetkin, S. A wavelet and teager energy operator based method for automatic detection of K-Complex in sleep EEG. Expert Syst. Appl. 2012, 39, 1284–1290. [Google Scholar] [CrossRef]
- Sharma, M.; Acharya, U.R. Analysis of knee-joint vibroarthographic signals using bandwidth-duration localized three-channel filter bank. Comput. Electr. Eng. 2018, 72, 191–202. [Google Scholar] [CrossRef]
- Sharma, M.; Acharya, U.R. A new method to identify coronary artery disease with ECG signals and time-Frequency concentrated antisymmetric biorthogonal wavelet filter bank. Pattern Recognit. Lett. 2019, 125, 235–240. [Google Scholar] [CrossRef]
- Han, S.-J.; Song, M.; Kim, J.; Lee, W.-S.; Lee, H.-K. Classification of temporal bone pneumatization based on sigmoid sinus using computed tomography. Clin. Radiol. 2007, 62, 1110–1118. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 36393655. [Google Scholar] [CrossRef] [Green Version]
- Liao, B.; Ma, C.; Xiao, L.; Lu, R.; Ding, L. An arctan-activated wasd neural network approach to the prediction of dow jones industrial average. In International Symposium on Neural Networks; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010; Physica-Verlag HD: Heidelberg, Germany, 2010. [Google Scholar]
- Johnson, R.; Zhang, T. Accelerating stochastic gradient descent using predictive variance reduction. Adv. Neural Inf. Process. Syst. 2013, 26, 315–323. [Google Scholar]
- Zinkevich, M.; Weimer, M.; Smola, A.J.; Li, L. Parallelized stochastic gradient descent. Adv. Neural Inf. Process. Syst. 2010, 4, 2595–2603. [Google Scholar]
- Zhang, T. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In Proceedings of the Twenty First International Conference on Machine Learning, New York, NY, USA, 4–8 July 2004; p. 116. [Google Scholar]
- Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Elajnef, T.; Echaibi, S.; Eeichenlaub, J.-B.; Ruby, P.M.; Eaguera, P.-E.; Esamet, M.; Ekachouri, A.; Ejerbi, K. Sleepspindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis. Front. Hum. Neurosci. 2015, 9, 414. [Google Scholar] [CrossRef]
- Al-Salman, W.; Li, Y.; Wen, P. Detection of EEG K-Complexes Using Fractal Dimension of Time Frequency Images Technique Coupled with Undirected Graph Features. Front. Hum. Neurosci. 2019, 13, 45. [Google Scholar] [CrossRef] [Green Version]
- Al-Salman, W.; Li, Y.; Wen, P. Detection of k-complexes in EEG signals using a multi-domain feature extraction coupled with a least square support vector machine classifier. Neurosci. Res. 2012, 172, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Chambon, S.; Thorey, V.; Arnal, P.J.; Mignot, E.; Gramfort, A. A deep learning architecture to detect events in EEG signals during sleep. In Proceedings of the 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), Aalborg, Denmark, 17–20 September 2018. [Google Scholar]
- Oliveira, G.H.; Coutinho, L.R.; da Silva, J.C.; Pinto, I.J.; Ferreira, J.M.; Silva, F.J.; Santos, D.V.; Teles, A.S. Multitaper-based method for automatic k-complex detection in human sleep EEG. Expert Syst. Appl. 2020, 151, 113331. [Google Scholar] [CrossRef]
Distribution | ||
---|---|---|
1 | Wigner-Ville | |
Born-Jordan | ||
Choi-Williams | ||
Spectrograma |
Number of Neurons | Training | Testing | ||
---|---|---|---|---|
Cost | Accuracy | Cost | Accuracy | |
8 | 0.57 | 75.57 | 0.35 | 87.05 |
16 | 0.58 | 72.00 | 0.32 | 90.18 |
32 | 0.58 | 73.29 | 0.46 | 88.62 |
64 | 0.56 | 74.56 | 0.34 | 87.18 |
128 | 0.54 | 74.23 | 0.38 | 85.65 |
256 | 0.55 | 75.83 | 0.38 | 89.97 |
Number of Neurons | Training | Testing | ||
---|---|---|---|---|
Cost | Accuracy | Cost | Accuracy | |
8 | 0.52 | 72.87 | 0.35 | 94.65 |
16 | 0.52 | 74.00 | 0.38 | 84.65 |
32 | 0.58 | 72.89 | 0.41 | 84.62 |
64 | 0.53 | 74.00 | 0.38 | 93.23 |
128 | 0.58 | 64.25 | 0.38 | 82.35 |
256 | 1.55 | 52.63 | 0.75 | 90.17 |
Number of Neurons | Training | Testing | ||
Cost | Accuracy | Cost | Accuracy | |
8 | 0.67 | 67.87 | 0.35 | 98.30 |
16 | 0.67 | 64.53 | 0.31 | 95.67 |
32 | 0.55 | 72.79 | 0.31 | 92.62 |
64 | 0.58 | 74.31 | 0.33 | 88.53 |
128 | 0.52 | 78.25 | 0.34 | 87.38 |
256 | 0.55 | 71.13 | 0.35 | 94.17 |
Predicted Label | ||||
---|---|---|---|---|
Background Noise | Single EEG Signal | Two EEG Signals | ||
True Label | Background Noise | 1.00 | 0.00 | 0.00 |
Single EEG Signal | 0.00 | 0.96 | 0.06 | |
Two EEG Signals | 0.00 | 0.93 | 0.57 |
Classes | Precision | Recall | F1 Score |
---|---|---|---|
Background Noise | 1 | 1 | 1 |
Single EEG Signal | 0.99 | 0.98 | 0.98 |
Two EEG Signals | 0.98 | 0.97 | 0.97 |
Average/total | 0.98 | 0.95 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitrescu, C.; Costea, I.-M.; Cormos, A.-C.; Semenescu, A. Automatic Detection of K-Complexes Using the Cohen Class Recursiveness and Reallocation Method and Deep Neural Networks with EEG Signals. Sensors 2021, 21, 7230. https://doi.org/10.3390/s21217230
Dumitrescu C, Costea I-M, Cormos A-C, Semenescu A. Automatic Detection of K-Complexes Using the Cohen Class Recursiveness and Reallocation Method and Deep Neural Networks with EEG Signals. Sensors. 2021; 21(21):7230. https://doi.org/10.3390/s21217230
Chicago/Turabian StyleDumitrescu, Catalin, Ilona-Madalina Costea, Angel-Ciprian Cormos, and Augustin Semenescu. 2021. "Automatic Detection of K-Complexes Using the Cohen Class Recursiveness and Reallocation Method and Deep Neural Networks with EEG Signals" Sensors 21, no. 21: 7230. https://doi.org/10.3390/s21217230