Long-Term Ship Position Prediction Using Automatic Identification System (AIS) Data and End-to-End Deep Learning
<p>Time-interval distribution of the AIS dataset.</p> "> Figure 2
<p>Uncertain trajectory reconstruction of long-time-interval data with uneven distribution.</p> "> Figure 3
<p>Flowchart of vessel prediction model with AIS and deep learning.</p> "> Figure 4
<p>Relation between the distance error and the angular error.</p> "> Figure 5
<p>Normalized density distribution of AIS data in the observed Indian Ocean area.</p> "> Figure 6
<p>Sensitivity analysis of the DL model.</p> "> Figure 7
<p>Location of the observed areas: (<b>a</b>) open oceans and (<b>b</b>) maritime chokepoints. NPO, North Pacific Ocean; SPO, South Pacific Ocean; NAO, North Atlantic Ocean; SAO, South Atlantic Ocean; IO, Indian Ocean; PS, Philippine Sea; GS, Gibraltar Strait; SAC, South Africa Coast; BMS, Bab al-Mandab Strait; HS, Strait of Hurmuz; LS, Laccadive Sea; MS, Malacca Strait.</p> "> Figure 8
<p>Distance error distribution of the predicted positions based on the distance interval on ocean areas (<b>left</b>) and chokepoint areas (<b>right</b>): DL model (<b>top</b>) and geodesic calculation (<b>below</b>).</p> "> Figure 9
<p>Mean PFI score of the DL models on the ocean areas (<b>left</b>) and chokepoint areas (<b>right</b>).</p> "> Figure 10
<p>Size distribution of the training set and dev-test sets for each area.</p> "> Figure 11
<p>Effect of dataset size on the deep learning performance in Malacca Strait (MS).</p> "> Figure 12
<p>Location of the observation area (red-filled square): the Malacca Strait; the normalized density distribution is calculated based on the test set.</p> "> Figure 13
<p>Fitted plots of the daily prediction of the number of ships in the Malacca Strait from October to December 2018: (<b>a</b>) DL model and (<b>b</b>) geodesic calculation.</p> "> Figure 14
<p>Daily prediction of the number of ships in the Malacca strait in November 2018.</p> "> Figure 15
<p>Ship positions in the Malacca strait on three consecutive days in November 2018: TP is the true position (<b>left</b>), DL is the deep learning prediction (<b>center</b>), and GC is the geodesic calculation (<b>right</b>).</p> "> Figure 16
<p>The small dataset properties: (<b>a</b>) Time-interval distribution; (<b>b</b>) Normalized density distribution.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Vessel Position Prediction Studies
2.2. Characteristics of Trajectory-Based and Motion-Based Methods
3. Data Exploration and Characteristic of This Study
3.1. AIS Data
3.2. Ship Data
3.3. Characteristic of Data for Long-Term Prediction and Originality of This Paper
4. Methodology
4.1. Overall Prediction Methodology
4.2. Input and Target Features
4.3. Deep Learning Model
4.3.1. Model Development
4.3.2. Model Structure
4.4. Performance Evaluation Metrics
4.4.1. Loss Score
4.4.2. Metric Score
5. Experimental Results and Discussions
5.1. Baseline Model
5.2. First Experiment: DL Model for the Indian Ocean
5.2.1. Experimental Setup
5.2.2. Error and Sensitivity Analyses
5.2.3. Results and Discussions
5.3. Second Experiment: DL Models for the International Open Waters
5.3.1. Experimental Setup
5.3.2. Results and Discussions
5.3.3. Discussions: Influence of the Area
5.3.4. Discussions: Influence of Data Size
5.4. Third Experiment: Application of the DL Model
5.4.1. Experimental Setup
5.4.2. Results and Discussions
6. Discussions on Robustness of End-to-End Deep Learning Models
6.1. Comparison of End-to-End DL Models
6.2. Comparison of End-to-End DL Models on Small Dataset
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodrigue, J.-P.; Comtois, C.; Slack, B. The Geography of Transport Systems; Routledge: Milton Park, UK, 2016. [Google Scholar]
- Taylor, I.; Smith, K. United Nations Conference on Trade and Development (UNCTAD); Routledge: Milton Park, UK, 2007. [Google Scholar]
- Pallotta, G.; Vespe, M.; Bryan, K. Vessel Pattern Knowledge Discovery from AIS Data: A Framework for Anomaly Detection and Route Prediction. Entropy 2013, 15, 2218–2245. [Google Scholar] [CrossRef] [Green Version]
- Statheros, T.; Howells, G.; Maier, K.M. Autonomous Ship Collision Avoidance Navigation Concepts, Technologies and Techniques. J. Navig. 2008, 61, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.; Perera, L.P. A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data. Ocean Eng. 2020, 209, 107478. [Google Scholar] [CrossRef]
- Sheng, P.; Yin, J. Extracting Shipping Route Patterns by Trajectory Clustering Model Based on Automatic Identification System Data. Sustainability 2018, 10, 2327. [Google Scholar] [CrossRef] [Green Version]
- Robards, M.; Silber, G.; Adams, J.; Arroyo, J.; Lorenzini, D.; Schwehr, K.; Amos, J. Conservation science and policy applications of the marine vessel Automatic Identification System (AIS)-A review. Bull. Mar. Sci. 2016, 92, 75–103. [Google Scholar] [CrossRef]
- Perera, L.P.; Oliveira, P.; Soares, C.G. Maritime Traffic Monitoring Based on Vessel Detection, Tracking, State Estimation, and Trajectory Prediction. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1188–1200. [Google Scholar] [CrossRef]
- Czapiewska, A.; Sadowski, J. Algorithms for Ship Movement Prediction for Location Data Compression. Trans. Nav: Int. J. Mar. Navig. Saf. Sea Transp. 2015, 9, 75–81. [Google Scholar]
- Chen, X.; Lin, X. Big Data Deep Learning: Challenges and Perspectives. IEEE Access 2014, 2, 514–525. [Google Scholar] [CrossRef]
- Liu, J.; Shi, G.; Zhu, K. Vessel Trajectory Prediction Model Based on AIS Sensor Data and Adaptive Chaos Differential Evolution Support Vector Regression (ACDE-SVR). Appl. Sci. 2019, 9, 2983. [Google Scholar] [CrossRef] [Green Version]
- Pallotta, G.; Horn, S.; Braca, P.; Bryan, K. Context-enhanced vessel prediction based on Ornstein-Uhlenbeck processes using historical AIS traffic patterns: Real-World Experimental Results. In Proceedings of the 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–7. [Google Scholar]
- Tu, E.; Zhang, G.; Mao, S.; Rachmawati, L.; Huang, G.-B. Modeling Historical AIS Data For Vessel Path Prediction: A Comprehensive Treatment. arXiv 2020, arXiv:2001.015922. [Google Scholar]
- Mazzarella, F.; Arguedas, V.F.; Vespe, M. Knowledge-Based Vessel Position Prediction Using Historical AIS data. In Proceedings of the 2015 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 6–8 October 2015; pp. 1–6. [Google Scholar]
- Dalsnes, B.R.; Hexeberg, S.; Flåten, A.L.; Eriksen, B.H.; Brekke, E.F. The Neighbor Course Distribution Method with Gaussian Mixture Models for AIS-Based Vessel Trajectory Prediction. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 580–587. [Google Scholar]
- Virjonen, P.; Nevalainen, P.; Pahikkala, T.; Heikkonen, J. Ship Movement Prediction Using k-NN Method. In Proceedings of the 2018 Baltic Geodetic Congress (BGC Geomatics), Olsztyn, Poland, 21–23 June 2018; pp. 304–309. [Google Scholar]
- Duca, A.L.; Bacciu, C.; Marchetti, A. A K-Nearest Neighbor Classifier for Ship Route Prediction. In Proceedings of the OCEANS 2017, Aberdeen, UK, 19–22 June 2017; pp. 1–6. [Google Scholar]
- Kim, K.-I.; Lee, K.M. Deep Learning-Based Caution Area Traffic Prediction with Automatic Identification System Sensor Data. Sensors 2018, 18, 3172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Liu, Z.; Wang, F.; Xie, Y.; Zhang, X. Using Deep Learning to Forecast Maritime Vessel Flows. Sensors 2020, 20, 1761. [Google Scholar] [CrossRef] [Green Version]
- Mao, S.; Tu, E.; Zhang, G.; Rachmawati, L.; Rajabally, E.; Huang, G.-B. An Automatic Identification System (AIS) Database for Maritime Trajectory Prediction and Data Mining. In Proceedings of ELM-2016; Springer: Berlin/Heidelberg, Germany, 2018; pp. 241–257. [Google Scholar]
- Juraszek, K.; Saini, N.; Charfuelan, M.; Hemsen, H.; Markl, V. Extended Kalman Filter for Large Scale Vessels Trajectory Tracking in Distributed Stream Processing Systems; Springer: Cham, Switzerland, 2020; pp. 151–166. [Google Scholar]
- Simsir, U.; Ertugrul, S. Prediction of manually controlled vessels’ position and course navigating in narrow waterways using Artificial Neural Networks. Appl. Soft Comput. 2009, 9, 1217–1224. [Google Scholar] [CrossRef]
- Borkowski, P. The Ship Movement Trajectory Prediction Algorithm Using Navigational Data Fusion. Sensors 2017, 17, 1432. [Google Scholar] [CrossRef] [PubMed]
- Zissis, D.; Xidias, E.K.; Lekkas, D. Real-time vessel behavior prediction. Evol. Syst. 2016, 7, 29–40. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Zhang, S. Ship Trajectory Prediction Based on BP Neural Network. J. Artif. Intell. 2019, 1, 29–36. [Google Scholar] [CrossRef]
- Gao, M.; Shi, G.; Li, S. Online Prediction of Ship Behavior with Automatic Identification System Sensor Data Using Bidirectional Long Short-Term Memory Recurrent Neural Network. Sensors 2018, 18, 4211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, D.-W.; Zhu, Y.-S.; Zhang, J.-F.; He, Y.-K.; Yan, K.; Yan, B.-R. A novel MP-LSTM method for ship trajectory prediction based on AIS data. Ocean Eng. 2021, 228, 108956. [Google Scholar] [CrossRef]
- Zhang, C.; Bin, J.; Wang, W.; Peng, X.; Wang, R.; Halldearn, R.; Liu, Z. AIS data driven general vessel destination prediction: A random forest based approach. Transp. Res. Part C Emerg. Technol. 2020, 118, 102729. [Google Scholar] [CrossRef]
- ExactEarth. ExactAIS Archive™. Available online: exactearth.com/ (accessed on 20 March 2020).
- Gl, DNV. MARITIME FORECAST TO 2050—Energy Transition Outlook 2019; Technical report; DNV GL: Oslo, Norway, 2017; Available online: DNVGL.com (accessed on 10 October 2019).
- IHSMarkit. Sea-web Ships. Available online: https://ihsmarkit.com/products/sea-web-vessel-search.html (accessed on 13 April 2021).
- Rubanova, Y.; Ricky, T.Q.C.; Duvenaud, D. Latent Ordinary Differential Equations for Irregularly-Sampled Time Series; Cornell University: Ithaca, NY, USA, 2019. [Google Scholar]
- Bonham, C.; Noyvirt, A.; Tsalamanis, I.; Williams, S. Analysing port and shipping operations using big data. Data Sci. Campus ONS 2018. [Google Scholar]
- Shickel, B.; Rashidi, P. Sequential Interpretability: Methods, Applications, and Future Direction for Understanding Deep Learning Models in the Context of Sequential Data. arXiv 2020, arXiv:2004.12524. [Google Scholar]
- Vieira, S.; Pinaya, W.H.L.; Mechelli, A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci. Biobehav. Rev. 2017, 74, 58–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 17 October 2021).
- Fisher, A.; Rudin, C.; Dominici, F. All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. 2019, 20, 1–81. [Google Scholar]
- Molnar, C. Interpretable Machine Learning; Lulu.com: Morrisville, NC, USA, 2020. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Prechelt, L. Early Stopping—But When? In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Robusto, C.C. The cosine-haversine formula. Am. Math. Mon. 1957, 64, 38–40. [Google Scholar] [CrossRef]
- Tumer, K.; Ghosh, J. Estimating the Bayes error rate through classifier combining. In Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria, 25–29 August 1996; Volume 692, pp. 695–699. [Google Scholar]
- Tseng, W.-K.; Lee, H.-S. The Vector Function for Distance Travelled in Great Circle Navigation. J. Navig. 2007, 60, 158–164. [Google Scholar] [CrossRef]
- Veness, C. Calculate Distance, Bearing and More between Latitude/Longitude Points. Available online: http://www.movable-type.co.uk/scripts/latlong.html (accessed on 13 December 2020).
- Botev, Z.I.; Grotowski, J.F.; Kroese, D.P. Kernel density estimation via diffusion. Ann. Statist. 2010, 38, 2916–2957. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, J. Basemap. 2011. Available online: https://github.com/matplotlib/basemap (accessed on 17 October 2021).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd acm sigkdd International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Rodrigue, J.-P. Maritime transportation: Drivers for the Shipping and Port Industries. In Proceedings of the International Transport Forum, Leipzig, Germany, 26–28 May 2010. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Xiong, H.; Li, X.; Zhu, Z.; Huan, J. Towards Making Deep Transfer Learning Never Hurt. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2019; pp. 578–587. [Google Scholar]
- Gers, F.A.; Eck, D.; Schmidhuber, J. Applying LSTM to Time Series Predictable Through Time-Window Approaches. In Neural Nets WIRN Vietri-01; Springer: Berlin/Heidelberg, Germany, 2002; pp. 193–200. [Google Scholar]
Prediction Method 1 | Authors | ∆t Threshold | ∆t Prediction | Objective 2 | AIS Data (Range) | ML Algorithm 3 | Target Vessel 4 | Target Area 5 | Unrestricted Trajectory |
---|---|---|---|---|---|---|---|---|---|
T-b | [12] | Medium | 8 h | MSA | 5 months | - | Cg, Tg, Tk | OW | Yes |
T-b | [14] | Medium | 10 h | MSA | 1 month | - | Cg | OW | No |
T-b | [15] | Short | 15 min | CA | 1 year | - | nr | RW | Yes |
T-b | [16] | Short | 5 min | MTM | 2 months | kNN | nr | RW | No |
T-b | [13] | Medium | 1 h | MSA | nr | ELM | nr | nr | Yes |
P-b | [17] | Medium | 1 h | MTM | 1 month | kNN | Fs, Cg, Tk | RW | Yes |
P-b | [18] | Short | 50 min | MTM | 2 years | CNN | Cg, Tk | RW | Yes |
P-b | [19] | Short | 5 min | MTM | 1 month | CNN, LSTM | nr | RW | Yes |
M-b | [8] | Short | <1 min | MTM | - | - | nr | RW | No |
M-b | [9] | Short | 5 min | DC | nr | - | Cg | RW | No |
M-b | [20] | Short | 40 min | AD, MSA | 1 month | ELM | nr | OW | No |
M-b | [21] | Short | 8 min | MTM | 3 months | - | nr | RW | Yes |
M-b | [22] | Short | 3 min | MTM | - | MLP | Tk | RW | No |
M-b | [23] | Short | 15 min | CA | nr | MLP | Fe | nr | No |
M-b | [24] | Medium | 4 h | MSA | nr | MLP | Ps | RW | No |
M-b | [25] | Short | 20 min | CA, MSA | nr | MLP | nr | RW | Yes |
M-b | [26] | Short | 10 min | CA | 1 year | bLSTM | nr | RW | Yes |
M-b | [27] | Short | <1 min | CA | nr | LSTM | Fe | RW | No |
M-b | Current study | Long | 24 h | MSA, SA | 9 years | MLP | BC | OW | Yes |
Trajectory-Based | Motion-Based | |
---|---|---|
Merits | high accuracy for any time-interval threshold and area size | flexible, efficient, and can be generalized for data variation |
Demerits | requires arduous work on pre-processing such as trajectory definition, classification, and reconstruction | requires machine learning where developing a model involves a CPU-intensive and specialized expertise |
Model | ||
---|---|---|
Geodesic calculation | 0.225 | 0.226 |
Training set | 0.163 | 0.145 |
Dev set | 0.169 | 0.147 |
Methods | Loss | (km) | (Degree) | |
---|---|---|---|---|
Average distance interval | 3.553 | 2.564 | 486.1 | - |
Geodesic calculation | 0.239 | 0.239 | 40.6 | 3.3 |
Deep learning | 0.174 | 0.149 | 27.0 | 1.7 |
Random forest | 0.197 | 0.174 | 31.3 | 2.1 |
Gradient boosted decision tree | 0.198 | 0.171 | 31.4 | 2.3 |
XGBoost | 0.197 | 0.175 | 31.6 | 2.2 |
Area | DL Model | (%) | Geodesic Calculation | Number of Test Data | Average Distance Interval | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Loss | (km) | (deg) | Loss | (km) | (deg) | ||||||
NPO | 0.18 | 0.13 | 27 | 1.8 | 27 | 0.20 | 0.23 | 37 | 3.1 | 471 | 485 |
SPO | 0.13 | 0.11 | 20 | 1.5 | 15 | 0.13 | 0.15 | 24 | 2.1 | 499 | 484 |
NAO | 0.30 | 0.22 | 41 | 3.7 | 15 | 0.33 | 0.28 | 48 | 4.5 | 2474 | 467 |
SAO | 0.13 | 0.11 | 19 | 1.7 | 24 | 0.15 | 0.15 | 26 | 2.5 | 4672 | 491 |
IO | 0.17 | 0.15 | 27 | 1.7 | 33 | 0.24 | 0.24 | 41 | 3.3 | 10,888 | 486 |
PS | 0.25 | 0.31 | 48 | 8.0 | 37 | 0.48 | 0.46 | 77 | 10.5 | 9206 | 453 |
GS | 0.54 | 0.27 | 63 | 21.7 | 38 | 0.78 | 0.53 | 102 | 20.2 | 4263 | 355 |
SAC | 0.35 | 0.23 | 46 | 15.4 | 50 | 0.59 | 0.54 | 92 | 15.0 | 13,337 | 389 |
BMS | 0.28 | 0.31 | 51 | 4.3 | 55 | 0.56 | 0.75 | 113 | 10.9 | 1251 | 473 |
HS | 0.34 | 0.27 | 52 | 39.8 | 58 | 0.77 | 0.70 | 123 | 31.0 | 3734 | 259 |
LS | 0.26 | 0.33 | 51 | 37.4 | 50 | 0.57 | 0.63 | 102 | 27.8 | 5975 | 273 |
MS | 0.37 | 0.34 | 63 | 16.7 | 60 | 0.88 | 0.93 | 158 | 19.5 | 22,745 | 417 |
Areas | Methods | Loss | (km) | (Degree) | Training Time (s) | |
---|---|---|---|---|---|---|
Indian Ocean (IO) | MLP | 0.174 | 0.149 | 27.0 | 1.7 | 1699 |
RNN | 0.176 | 0.150 | 27.4 | 1.7 | 2758 | |
LSTM | 0.177 | 0.148 | 27.3 | 1.7 | 1845 | |
Malacca Strait (MS) | MLP | 0.376 | 0.337 | 62.8 | 16.9 | 4257 |
RNN | 0.384 | 0.335 | 63.6 | 16.6 | 6561 | |
LSTM | 0.381 | 0.336 | 63.4 | 16.2 | 6243 |
Methods | Loss | (m) | (Degree) | Training Time (s) | Total Params | |
---|---|---|---|---|---|---|
Average distance interval | 19.7 | 12.1 | 24.6 | - | - | - |
Geodesic calculation | 2.4 | 2.1 | 3.5 | 29.2 | - | - |
MLP | 2.3 | 1.8 | 3.2 | 31.5 | 922 | 8545 |
RNN | 2.4 | 1.8 | 3.3 | 31.4 | 2537 | 19,041 |
LSTM | 2.3 | 1.7 | 3.2 | 31.4 | 1693 | 76,113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibadurrahman; Hamada, K.; Wada, Y.; Nanao, J.; Watanabe, D.; Majima, T. Long-Term Ship Position Prediction Using Automatic Identification System (AIS) Data and End-to-End Deep Learning. Sensors 2021, 21, 7169. https://doi.org/10.3390/s21217169
Ibadurrahman, Hamada K, Wada Y, Nanao J, Watanabe D, Majima T. Long-Term Ship Position Prediction Using Automatic Identification System (AIS) Data and End-to-End Deep Learning. Sensors. 2021; 21(21):7169. https://doi.org/10.3390/s21217169
Chicago/Turabian StyleIbadurrahman, Kunihiro Hamada, Yujiro Wada, Jota Nanao, Daisuke Watanabe, and Takahiro Majima. 2021. "Long-Term Ship Position Prediction Using Automatic Identification System (AIS) Data and End-to-End Deep Learning" Sensors 21, no. 21: 7169. https://doi.org/10.3390/s21217169
APA StyleIbadurrahman, Hamada, K., Wada, Y., Nanao, J., Watanabe, D., & Majima, T. (2021). Long-Term Ship Position Prediction Using Automatic Identification System (AIS) Data and End-to-End Deep Learning. Sensors, 21(21), 7169. https://doi.org/10.3390/s21217169