Superpixel Segmentation Based on Grid Point Density Peak Clustering
<p>The six typical superpixel segmentation results. (<b>a</b>) SLIC [<a href="#B6-sensors-21-06374" class="html-bibr">6</a>], (<b>b</b>) PB [<a href="#B14-sensors-21-06374" class="html-bibr">14</a>], (<b>c</b>) LSC [<a href="#B8-sensors-21-06374" class="html-bibr">8</a>], (<b>d</b>) DBSCAN [<a href="#B11-sensors-21-06374" class="html-bibr">11</a>,<a href="#B12-sensors-21-06374" class="html-bibr">12</a>], (<b>e</b>) ERS [<a href="#B9-sensors-21-06374" class="html-bibr">9</a>], (<b>f</b>) SEEDS [<a href="#B13-sensors-21-06374" class="html-bibr">13</a>].</p> "> Figure 2
<p>Image preprocessing. (<b>a</b>) Original image, (<b>b</b>) Lab image and the grid feature points, (<b>c</b>) the smoothed and filtered image.</p> "> Figure 3
<p>The density schematic diagram of the point <span class="html-italic">p</span>.</p> "> Figure 4
<p>The probability distribution of the points. (<b>a</b>) The superpixel segmentation schematic diagram. (<b>b</b>) The density peaks and the contour maps are used to describe the density distribution of the other points.</p> "> Figure 5
<p>The distribution of all the feature points in the <span class="html-italic">ρ</span>′–<span class="html-italic">δ</span>′ coordinate system.</p> "> Figure 6
<p>Extracting the cluster centers by inverse function. The triangle symbols are the center points and the red dots are the other points.</p> "> Figure 7
<p>Extracting the cluster centers by <span class="html-italic">λ.</span> The triangle symbols are the center points, and the red dots are the other points.</p> "> Figure 8
<p>The results of the superpixel segmentation experiment. (<b>a</b>) The color blocks represent the different superpixels, (<b>b</b>) the black lines show the superpixel boundaries, (<b>c</b>) The red segmentation lines between the different salient regions, (<b>d</b>) The superpixel image.</p> "> Figure 9
<p>The superpixel segmentation results. The segmentation results are obtained with the different <span class="html-italic">R</span>. (<b>a</b>) The images which include the large smoothly connected homogenous regions are segmented by fewer and larger superpixels. (<b>b</b>) The images which include the complex textures and contours are segmented by more and smaller superpixels.</p> "> Figure 10
<p>The superpixel segmentation time-consuming with different values of <span class="html-italic">R</span>.</p> "> Figure 11
<p>The segmentation results comparison of the different superpixel methods. (<b>a</b>) Lattice [<a href="#B17-sensors-21-06374" class="html-bibr">17</a>], (<b>b</b>) Ncuts [<a href="#B5-sensors-21-06374" class="html-bibr">5</a>], (<b>c</b>) SLIC [<a href="#B6-sensors-21-06374" class="html-bibr">6</a>], (<b>d</b>) LSC [<a href="#B8-sensors-21-06374" class="html-bibr">8</a>], (<b>e</b>) SEEDS [<a href="#B13-sensors-21-06374" class="html-bibr">13</a>], (<b>f</b>) EneOpt1 [<a href="#B18-sensors-21-06374" class="html-bibr">18</a>], (<b>g</b>) quick shift [<a href="#B19-sensors-21-06374" class="html-bibr">19</a>], (<b>h</b>) ERS [<a href="#B9-sensors-21-06374" class="html-bibr">9</a>], (<b>i</b>) ours.</p> "> Figure 12
<p>(<b>a</b>,<b>b</b>) Boundary Recall and Achievement Segmentation Accuracy of the superpixel methods on the BSDS500 dataset. The SEEDS, SLIC, ERS and LSC are examples of the classical methods. CSGBA [<a href="#B20-sensors-21-06374" class="html-bibr">20</a>], ISF [<a href="#B21-sensors-21-06374" class="html-bibr">21</a>], RISF [<a href="#B22-sensors-21-06374" class="html-bibr">22</a>] and SNIC [<a href="#B23-sensors-21-06374" class="html-bibr">23</a>] are the examples of the state-of-the-art methods.</p> ">
Abstract
:1. Introduction
2. Image Preprocessing
2.1. The Feature Point and Color Feature Extraction
2.2. The Feature Point Density
3. Superpixel Segmentation with Density Peak-Based Clustering
Algorithm 1. Density Peak-Based Clustering |
Input: The set of the feature points On; The set of the parameters δn; The set of the parameters λn; |
Output: Ensemble of clusters S; |
1: Extracting the set of cluster centers from the feature points On with the help of the parameters δn or λn. The set of the cluster center is CM; |
2: for each i∈[0, N] do 3: Iterative and recurrence formulas oi→oh, oh→oj, …, ok→oc,until the cluster center oc is found; 4: oi→oc; |
5: end for |
6: for each i∈[0,M] do |
7: for each j∈[0, N] do |
8: if the point oj meet the condition oj→ci is true then |
9: Si= Si∪oj; |
10: end if |
11: end for |
12: end for |
13: return S; |
4. Superpixel Segmentation Experiment Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Qi, Q.; Shen, X. Image Segmentation of Brain MRI Based on LTriDP and Superpixels of Improved SLIC. Brain Sci. 2020, 10, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asieh, K.; Mohammad, R.; Parviz, K.; Saeed, M. Fast level set method for glioma brain tumor segmentation based on Superpixel fuzzy clustering and lattice Boltzmann method. Comput. Methods Programs Biomed. 2021, 198, 105809. [Google Scholar]
- Li, Y.; Hong, Z.; Cai, D. A SVM and SLIC Based Detection Method for Paddy Field Boundary Line. Sensors 2020, 20, 2610. [Google Scholar]
- Yang, Q.; Chen, Y.; Xun, Y. Superpixel-based segmentation algorithm for mature citrus. Int. J. Agric. Biol. Eng. 2020, 13, 166–171. [Google Scholar]
- Ren, X.; Malik, J. Learning a Classification Model for Segmentation, International Conference on Computer Vision(ICCV). In Proceedings of the Proceedings Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; pp. 10–17. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; SüSstrunk, S. Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Chong, W.; Graduate, S.M.; Zheng, J.Z. Fuzzy SLIC: Fuzzy Simple Linear Iterative Clustering. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 2114–2124. [Google Scholar]
- Li, Z.; Chen, J. Superpixel segmentation using Linear Spectral Clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1356–1363. [Google Scholar]
- Liu, M.Y.; Tuzel, O.; Ramaligam, S. Entropy rate superpixel segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2097–2104. [Google Scholar]
- Ilyas, T.; Khan, A.; Umraiz, M.; Kim, H. Seek: A framework of superpixel learning with cnn features for unsupervised segmentation. Electronics 2020, 9, 383. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Mali, K.; Das, S.K. Real-Time Superpixel Segmentation by DBSCAN Clustering Algorithm. IEEE Trans. Image Process. 2017, 25, 5933–5942. [Google Scholar]
- Seng, C.L.; Bruce, A.M.; Matthew, P.; Burkhard, C.W. Accelerated superpixel image segmentation with a parallelized DBSCAN algorithm. J. Real-Time Image Process. 2021, 11, 1–16. [Google Scholar]
- Bergh, M.; Boix, X.; Roig, G.; Capitani, B.D.; Gool, L.V. SEEDS: Superpixels Extracted via Energy-Driven Sampling. In Proceedings of the European Conference on Computer Vision, Heidelberg, Germany, 10 January 2012; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Zhang, Y.; Hartley, R.I.; Mashford, J.; Burn, S. Superpixels via pseudo-Boolean optimization. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wang, S. Superpixel segmentation based on Delaunay Triangulation. In Proceedings of the 2016 23rd IEEE International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China, 28–30 November 2016; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Moore, A.; Prince, S.; Warrell, J. Lattice cut—Constructing superpixels using layer constraints. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1–8. [Google Scholar]
- Veksler, O.; Boykov, Y.; Mehrani, P. Superpixels and Supervoxels in an Energy Optimization Framework. In Proceedings of the European Conference on Computer Vision(ECCV), Heraklion, Crete, Greece, 5–11 September 2010; pp. 211–224. [Google Scholar]
- Veldadi, A.; Soatto, S. Quick shift and kernel methods for mode seeking. In Proceedings of the European Conference on Computer Vision, Marseille, France, 12–18 October 2008; pp. 705–718. [Google Scholar]
- Zhang, D.; Gang, X.; Ren, J. Content-Sensitive Superpixel Generation with Boundary Adjustment. Appl. Sci. 2020, 10, 3150. [Google Scholar] [CrossRef]
- Vargas-Muoz, J.E.; Chowdhury, A.S.; Alexandre, E.B. An Iterative Spanning Forest Framework for Superpixel Segmentation. IEEE Trans. Image Process. 2018, 99, 3477–3489. [Google Scholar]
- Galvo, F.L.; Guimares, S.; Falco, A.X. Image segmentation using dense and sparse hierarchies of superpixels. Pattern Recognit. 2020, 108, 107532. [Google Scholar] [CrossRef]
- Li, C.; Guo, B.; Wang, G. NICE: Superpixel Segmentation Using Non-Iterative Clustering with Efficiency. Appl. Sci. 2020, 10, 4415. [Google Scholar] [CrossRef]
Object | R | |||
---|---|---|---|---|
10 | 8 | 6 | 4 | |
building | 69 | 82 | 88 | 92 |
eagle | 73 | 82 | 87 | 93 |
mountain | 71 | 81 | 89 | 94 |
people | 68 | 72 | 80 | 91 |
starfish | 77 | 87 | 89 | 96 |
flower | 78 | 89 | 92 | 95 |
Methods | Average Time per Image(s) | Boundary Recall (%) |
---|---|---|
SEEDS | 0.059 | 88.6 |
SLIC | 0.087 | 86.1 |
ERS | 0.798 | 92.0 |
LSC | 0.255 | 93.2 |
CSGBA | 0.146 | 93.0 |
ISF | 0.151 | 88.5 |
RISF | 0.082 | 89.4 |
SNIC | 0.064 | 88.5 |
Ours | 0.033 | 92.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Peng, X.; Wang, S. Superpixel Segmentation Based on Grid Point Density Peak Clustering. Sensors 2021, 21, 6374. https://doi.org/10.3390/s21196374
Chen X, Peng X, Wang S. Superpixel Segmentation Based on Grid Point Density Peak Clustering. Sensors. 2021; 21(19):6374. https://doi.org/10.3390/s21196374
Chicago/Turabian StyleChen, Xianyi, Xiafu Peng, and Sun’an Wang. 2021. "Superpixel Segmentation Based on Grid Point Density Peak Clustering" Sensors 21, no. 19: 6374. https://doi.org/10.3390/s21196374
APA StyleChen, X., Peng, X., & Wang, S. (2021). Superpixel Segmentation Based on Grid Point Density Peak Clustering. Sensors, 21(19), 6374. https://doi.org/10.3390/s21196374