Editorial of Special Issue “Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans”
Funding
Conflicts of Interest
References
- Cuadrado, J.; Michaud, F.; Lugrís, U.; Soto, M.P. Using Accelerometer Data to Tune the Parameters of an Extended Kalman Filter for Optical Motion Capture: Preliminary Application to Gait Analysis. Sensors 2021, 21, 427. [Google Scholar] [CrossRef] [PubMed]
- Escalona, J.; Urda, P.; Muñoz, S. A Track Geometry Measuring System Based on Multibody Kinematics, Inertial Sensors and Computer Vision. Sensors 2021, 21, 683. [Google Scholar] [CrossRef] [PubMed]
- Pulloquinga, J.L.; Escarabajal, R.J.; Ferrandiz, J.; Valles, M.; Mata, V.; Urizar, M. Vision-Based Hybrid Controller to Release a 4-DOF Parallel Robot from a Type II Singularity. Sensors 2021, 21, 4080. [Google Scholar] [CrossRef] [PubMed]
- Adduci, R.; Vermaut, M.; Naets, F.; Croes, J.; Desmet, W. A Discrete-Time Extended Kalman Filter Approach Tailored for Multibody Models: State-Input Estimation. Sensors 2021, 21, 4495. [Google Scholar] [CrossRef] [PubMed]
- Sands, T. Virtual Sensoring of Motion Using Pontryagin’s Treatment of Hamiltonian Systems. Sensors 2021, 21, 4603. [Google Scholar] [CrossRef] [PubMed]
- Docquier, N.; Timmermans, S.; Fisette, P. Haptic Devices Based on Real-Time Dynamic Models of Multibody Systems. Sensors 2021, 21, 4794. [Google Scholar] [CrossRef] [PubMed]
- Khadim, Q.; Kiani-Oshtorjani, M.; Jaiswal, S.; Matikainen, M.; Mikkola, A. Estimating the Characteristic Curve of a Directional Control Valve in a Combined Multibody and Hydraulic System Using an Augmented Discrete Extended Kalman Filter. Sensors 2021, 21, 5029. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Sanjurjo, E.; Pastorino, R.; Naya, M.A. Multibody-Based Input and State Observers Using Adaptive Extended Kalman Filter. Sensors 2021, 21, 5241. [Google Scholar] [CrossRef] [PubMed]
- Leanza, G.; Reina, J.L.; Blanco-Claraco, J.L. A Factor-Graph-Based Approach to Vehicle Sideslip Angle Estimation. Sensors 2021, 21, 5409. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Zhou, S.; Sun, Q.; Gao, F. Lunar Surface Fault-Tolerant Soft-Landing Performance and Experiment for a Six-Legged Movable Repetitive Lander. Sensors 2021, 21, 5680. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuadrado, J.; Naya, M.Á. Editorial of Special Issue “Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans”. Sensors 2021, 21, 6345. https://doi.org/10.3390/s21196345
Cuadrado J, Naya MÁ. Editorial of Special Issue “Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans”. Sensors. 2021; 21(19):6345. https://doi.org/10.3390/s21196345
Chicago/Turabian StyleCuadrado, Javier, and Miguel Á. Naya. 2021. "Editorial of Special Issue “Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans”" Sensors 21, no. 19: 6345. https://doi.org/10.3390/s21196345
APA StyleCuadrado, J., & Naya, M. Á. (2021). Editorial of Special Issue “Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans”. Sensors, 21(19), 6345. https://doi.org/10.3390/s21196345