Fabrication and Characterization of Line-by-Line Inscribed Tilted Fiber Bragg Gratings Using Femtosecond Laser
<p>Phase matching condition of the first order harmonic resonance.</p> "> Figure 2
<p>Transmission spectrum of (<b>a</b>) 2°TFBG-1 and (<b>b</b>) 2°TFBG-2. Microscopy image (100×) of 2°TFBG-1: (<b>c</b>) top view and (<b>d</b>) side view. Microscopy image (100×) of 2°TFBG-2: (<b>e</b>) top view and (<b>f</b>) side view.</p> "> Figure 3
<p>(<b>a</b>) Schematic of TFBG with offset distance <span class="html-italic">d</span>. (<b>b</b>) Overlap integral of fundamental mode versus offset distance. (<b>c</b>) Overlap integrals of the first 50 cladding modes under different offset distance.</p> "> Figure 4
<p>Transmission spectrum of (<b>a</b>) 2°TFBG, (<b>b</b>) 4°TFBG and (<b>c</b>) 6°TFBG, and microscopy image (100×) of (<b>d</b>) 2°TFBG, (<b>e</b>) 4°TFBG and (<b>f</b>) 6°TFBG.</p> "> Figure 5
<p>Transmission spectra of (<b>a</b>) 12°TFBG, (<b>b</b>) 15°TFBG and (<b>c</b>) 18°TFBG, and microscopy image (100×) of (<b>d</b>) 12°TFBG, (<b>e</b>) 15°TFBG and (<b>f</b>) 18°TFBG.</p> "> Figure 6
<p>(<b>a</b>) Schematic of polarization-dependent spectrum measurement system. (<b>b</b>) Spectra of 18°TFBG under different polarization states.</p> "> Figure 7
<p>Schematic setup of torsional detection.</p> "> Figure 8
<p>Spectra of 18°TFBG under different twist angles.</p> "> Figure 9
<p>Depth variations of dip A and dip B under different twist angles.</p> "> Figure 10
<p>Spectra of 6°TFBGs with different harmonic order: (<b>a</b>) Λ = 2.22 μm, (<b>b</b>) Λ = 3.33 μm, (<b>c</b>) Λ = 4.44 μm (in oil), and (<b>d</b>) Λ = 4.44 μm (in air). Microscopy image (100×): (<b>e</b>) Λ = 2.22 μm, (<b>f</b>) Λ = 3.33 μm, and (<b>g</b>) Λ = 4.44 μm.</p> "> Figure 11
<p>Spectra of the 8th order 6°TFBG under different twist angles: (<b>a</b>) 0°, (<b>b</b>) 90°, (<b>c</b>) 180°, (<b>d</b>) 270° and (<b>e</b>) 360°.</p> "> Figure 12
<p>Correlation of spectra under different twist angles.</p> ">
Abstract
:1. Introduction
2. Inscription Method
3. Effect of TFBG Plane Position on Transmission Spectrum
4. Effect of Tilted Angle on Transmission Spectrum
5. Effect of Harmonic Order on Transmission Spectrum
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Albert, J.; Shao, L.Y.; Caucheteur, C. Tilted fiber Bragg grating sensors. Laser Photonics Rev. 2013, 7, 83–108. [Google Scholar] [CrossRef]
- Dong, X.; Hao, Z.; Liu, B.; Miao, Y. Tilted fiber Bragg gratings: Principle and sensing applications. Photonic Sens. 2011, 1, 6–30. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Si, J.; Chen, T. Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser. Opt. Express 2017, 25, 23684–23689. [Google Scholar] [CrossRef]
- Gang, T.; Liu, F.; Hu, M.; Albert, J. Integrated Differential Area Method for Variable Sensitivity Interrogation of Tilted Fiber Bragg Grating Sensors. J. Lightwave Technol. 2019, 37, 4531–4536. [Google Scholar] [CrossRef]
- Caucheteur, C.; Guo, T.; Liu, F.; Guan, B.; Albert, J. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat. Commun. 2016, 7, 13371. [Google Scholar] [CrossRef] [Green Version]
- Lao, J.; Han, L.; Wu, Z.; Zhang, X.; Huang, Y.; Tang, Y.; Guo, T. Gold Nanoparticle-Functionalized Surface Plasmon Resonance Optical Fiber Biosensor: In Situ Detection of Thrombin with 1 nM Detection Limit. J. Lightwave Technol. 2018, 37, 2748–2755. [Google Scholar] [CrossRef]
- Lao, J.; Sun, P.; Liu, F.; Zhang, X.; Zhao, C.; Mai, W.; Guo, T.; Xiao, G.; Albert, J. In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage. Light Sci. Appl. 2018, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liang, B.; Zhang, X.; Hu, N.; Li, K.; Chiavaioli, F.; Gui, X.; Guo, T. Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings. J. Lightwave Technol. 2019, 37, 3373–3380. [Google Scholar] [CrossRef]
- Shen, F.; Zhou, K.; Wang, C.; Jiang, H.; Peng, D.; Xia, H.; Xie, K.; Zhang, L. Polarization dependent cladding modes coupling and spectral analyses of excessively tilted fiber grating. Opt. Express 2020, 28, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Sun, Q.; Wang, C.; Sun, Z.; Mou, C.; Zhou, K.; Liu, D.; Zhang, L. Refractive index and temperature sensitivity characterization of excessively tilted fiber grating. Opt. Express 2017, 25, 3336–3346. [Google Scholar] [CrossRef]
- Zhou, K.; Simpson, G.; Chen, X.; Zhang, L.; Bennion, I. High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings. Opt. Lett. 2005, 30, 1285–1287. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Zhao, X.; Wang, M.; Wang, Z. Suppression of stimulated Brillouin scattering in optical fibers by tilted fiber Bragg gratings. Opt. Lett. 2020, 45, 4802–4805. [Google Scholar] [CrossRef]
- Zhang, Z.; Mou, C.; Yan, Z.; Zhou, K.; Zhang, L.; Turitsyn, S. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating. Opt. Express 2013, 21, 28297–28303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Huang, Q.; Theodosiou, A.; Cheng, X.; Zou, C.; Dai, L.; Kalli, K.; Mou, C. All-fiber passively mode-locked ultrafast laser based on a femtosecond-laser-inscribed in-fiber Brewster device. Opt. Lett. 2019, 44, 5177–5180. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Hsu, Y.; Chen, S.; Chiang, C. The manufacturing process and spectral features of tilted fiber Bragg gratings. Opt. Laser Technol. 2021, 134, 106615. [Google Scholar] [CrossRef]
- Pham, X.; Si, J.; Chen, T.; Qin, F.; Hou, X. Wide Range Refractive Index Measurement Based on Off-Axis Tilted Fiber Bragg Gratings Fabricated Using Femtosecond Laser. J. Lightwave Technol. 2019, 37, 3027–3034. [Google Scholar] [CrossRef]
- Ioannou, A.; Theodosiou, A.; Caucheteur, C.; Kalli, K. Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser. Opt. Lett. 2017, 42, 5198–5201. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Mihailov, S.J.; Ding, H.; Grobnic, D.; Walker, R.B.; Coulas, D.; Hnatovsky, C.; Naumov, A.Y. Plane-by-Plane Inscription of Grating Structures in Optical Fibers. J. Lightwave Technol. 2018, 36, 926–931. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; HUANG, Y.; Wu, Y. Study on Characteristics of Tilted Fiber Grating. In Proceedings of the 2018 International Conference on Modeling, Simulation and Optimization, Xiamen, China, 25–26 November 2018. [Google Scholar]
- Guo, T.; Fu, L.; Guan, B.; Albert, J. [INVITED]Tilted fiber grating mechanical and biochemical sensors. Opt. Laser Technol. 2016, 78, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Dubov, M.; Mou, C.; Zhang, L.; Mezentsev, V.K.; Bennion, I. Line-by-Line Fiber Bragg Grating Made by Femtosecond Laser. IEEE Photonics Technol. Lett. 2010, 22, 1190–1192. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Xu, Z.; Shu, X. Dual interference effects in a line-by-line inscribed fiber Bragg grating. Opt. Lett. 2020, 45, 2950–2953. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yang, K.; Liao, C.; Cai, Z.; Liu, Y.; Sun, B.; Wang, Y. Localized tilted fiber Bragg gratings induced by femtosecond laser line-by-line inscription. Opt. Lett. 2021, 46, 2204–2207. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, A.; Theodosiou, A.; Kalli, K.; Caucheteur, C. Higher-order cladding mode excitation of femtosecond-laser-inscribed tilted FBGs. Opt. Lett. 2018, 43, 2169–2172. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, A.; Theodosiou, A.; Caucheteur, C.; Kalli, K. Femtosecond Laser Inscribed Tilted Gratings for Leaky Mode Excitation in Optical Fibers. J. Lightwave Technol. 2020, 38, 1921–1928. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhao, X.; Rao, B.; Wang, M.; Wu, B.; Wang, Z. Fabrication and Characterization of Line-by-Line Inscribed Tilted Fiber Bragg Gratings Using Femtosecond Laser. Sensors 2021, 21, 6237. https://doi.org/10.3390/s21186237
Li H, Zhao X, Rao B, Wang M, Wu B, Wang Z. Fabrication and Characterization of Line-by-Line Inscribed Tilted Fiber Bragg Gratings Using Femtosecond Laser. Sensors. 2021; 21(18):6237. https://doi.org/10.3390/s21186237
Chicago/Turabian StyleLi, Hongye, Xiaofan Zhao, Binyu Rao, Meng Wang, Baiyi Wu, and Zefeng Wang. 2021. "Fabrication and Characterization of Line-by-Line Inscribed Tilted Fiber Bragg Gratings Using Femtosecond Laser" Sensors 21, no. 18: 6237. https://doi.org/10.3390/s21186237