Estimation with Uncertainty via Conditional Generative Adversarial Networks
<p>Comparison to related works. (<b>A</b>) cGAN as a prediction model (the proposed framework); (<b>B</b>) ordinary cGAN for sample generation; (<b>C</b>) artificial neural networks for prediction; (<b>D</b>) Bayesian neural networks.</p> "> Figure 2
<p>Neural network architectures of the proposed model (cGAN-UC-3). FC (<span class="html-italic">n</span>) indicates a fully connected layer with <span class="html-italic">n</span> nodes. DO (<math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mi>r</mi> </mrow> </semantics></math>) indicates a dropout layer with a dropout probability of <span class="html-italic">r</span>. BN represents the batch normalization. For other models, i.e., cGAN-UC-<span class="html-italic">k</span>, the numbers of fully connected layers, i.e., FC (128), in the generator and discriminator change to <span class="html-italic">k</span>.</p> "> Figure 3
<p>Portfolio performance with different strategies using cGAN-UC. Dark blue indicates a conventional strategy using only the prediction of returns while the others represent the strategies using the both predictions and estimated uncertainty. SD indicates the standard deviation of weekly returns. In each evaluation metric, the best performance is bold, and the second best is underlined.</p> "> Figure 4
<p>Comparison between the proposed uncertainty and classification loss in the test set of CIFAR-10. Light red indicates the uncertainty/loss distributions of which predictions are correct. Blue indicates the uncertainty/loss distribution of which predictions are wrong.</p> "> Figure 5
<p>Certain predictions and uncertain predictions for the test set of CIFAR-10. Top 3 certain predictions by cGAN-UC (<b>left</b>). Top 3 uncertain predictions by cGAN-UC (<b>right</b>). The ’Distribution’ column corresponds to the form of prediction results of cGAN-UC; each color indicates the estimated distribution for each class. Notice that the prediction result in second row of the uncertain predictions is wrong, and the others are correct.</p> "> Figure 6
<p>Prediction results for noisy test set of CIFAR-10. (<b>A</b>) Prediction accuracy of DenseNet and cGAN-UC with respect to noise. (<b>B</b>) The proposed uncertainty measure in cGAN-UC with respect to noise.</p> "> Figure 7
<p>Distributions of the uncertainty and the classification loss with the test set (<math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math>) and noises (<math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>).</p> "> Figure 8
<p>Prediction accuracy for the test set of CIFAR-100. The <span class="html-italic">a</span> indicates a noise parameter.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Problem Description
2.2. Stochastic Weights for Neural Networks
2.3. Generative Adversarial Networks and Their Conditional Variants
3. Methods
3.1. Conditional Generative Adversarial Networks as a Prediction Model
3.2. Entropy to Measure the Uncertainty of Predictions
3.3. Comparison to Related Works
4. Results
4.1. The Prediction of Stock Prices with the Uncertainty Measure of the Prediction
4.2. Image Classification with Uncertainty
4.3. Noisy Image Classification with Uncertainty
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710. [Google Scholar]
- Xie, S.; Kirillov, A.; Girshick, R.; He, K. Exploring Randomly Wired Neural Networks for Image Recognition. arXiv 2019, arXiv:1904.01569. [Google Scholar]
- Lopez, R.; Regier, J.; Cole, M.B.; Jordan, M.I.; Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 2018, 15, 1053. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.C.; Schroff, F.; Adam, H.; Hua, W.; Yuille, A.; Fei-Fei, L. Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Lin, Y.J.; Chao, T.K.; Khalil, M.A.; Lee, Y.C.; Hong, D.Z.; Wu, J.J.; Wang, C.W. Deep Learning Fast Screening Approach on Cytological Whole Slides for Thyroid Cancer Diagnosis. Cancers 2021, 13, 3891. [Google Scholar] [CrossRef] [PubMed]
- Murchan, P.; Ó’Brien, C.; O’Connell, S.; McNevin, C.S.; Baird, A.M.; Sheils, O.; Ó Broin, P.; Finn, S.P. Deep Learning of Histopathological Features for the Prediction of Tumour Molecular Genetics. Diagnostics 2021, 11, 1406. [Google Scholar] [CrossRef]
- Desportes, L.; Fijalkow, I.; Andry, P. Deep Reinforcement Learning for Hybrid Energy Storage Systems: Balancing Lead and Hydrogen Storage. Energies 2021, 14, 4706. [Google Scholar] [CrossRef]
- Suri, J.S.; Agarwal, S.; Pathak, R.; Ketireddy, V.; Columbu, M.; Saba, L.; Gupta, S.K.; Faa, G.; Singh, I.M.; Turk, M.; et al. COVLIAS 1.0: Lung Segmentation in COVID-19 Computed Tomography Scans Using Hybrid Deep Learning Artificial Intelligence Models. Diagnostics 2021, 11, 1405. [Google Scholar] [CrossRef]
- Stefano, A.; Comelli, A. Customized Efficient Neural Network for COVID-19 Infected Region Identification in CT Images. J. Imaging 2021, 7, 131. [Google Scholar] [CrossRef]
- Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; Wierstra, D. Weight Uncertainty in Neural Network. In Proceedings of the International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015; pp. 1613–1622. [Google Scholar]
- Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In Proceedings of the International Conference on Machine Learning (ICML), New York, NY, USA, 20–22 June 2016; pp. 1050–1059. [Google Scholar]
- Kendall, A.; Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 5574–5584. [Google Scholar]
- Brock, A.; Donahue, J.; Simonyan, K. Large scale gan training for high fidelity natural image synthesis. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral normalization for generative adversarial networks. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Lee, M.; Seok, J. Score-Guided Generative Adversarial Networks. arXiv 2020, arXiv:2004.04396. [Google Scholar]
- Lee, M.; Tae, D.; Choi, J.H.; Jung, H.Y.; Seok, J. Improved Recurrent Generative Adversarial Networks with Regularization Techniques and a Controllable Framework. Inf. Sci. 2020, 538, 428–443. [Google Scholar] [CrossRef]
- Miyato, T.; Koyama, M. cGANs with projection discriminator. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. arXiv 2018, arXiv:1805.08318. [Google Scholar]
- Lee, M.; Seok, J. Controllable generative adversarial network. IEEE Access 2019, 7, 28158–28169. [Google Scholar] [CrossRef]
- Odena, A.; Buckman, J.; Olsson, C.; Brown, T.B.; Olah, C.; Raffel, C.; Goodfellow, I. Is generator conditioning causally related to gan performance? In Proceedings of the International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018.
- Liu, Q.; Liu, W.; Yao, J.; Liu, Y.; Pan, M. An Improved Method of Reservoir Facies Modeling Based on Generative Adversarial Networks. Energies 2021, 14, 3873. [Google Scholar] [CrossRef]
- Yang, H.D. Restoring Raindrops Using Attentive Generative Adversarial Networks. Appl. Sci. 2021, 11, 7034. [Google Scholar] [CrossRef]
- Su, Y.H.; Jiang, W.; Chitrakar, D.; Huang, K.; Peng, H.; Hannaford, B. Local Style Preservation in Improved GAN-Driven Synthetic Image Generation for Endoscopic Tool Segmentation. Sensors 2021, 21, 5163. [Google Scholar] [CrossRef]
- Hassani, H.; Razavi-Far, R.; Saif, M.; Palade, V. Generative Adversarial Network-Based Scheme for Diagnosing Faults in Cyber-Physical Power Systems. Sensors 2021, 21, 5173. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, J.; Bai, K.; Sun, Y. Centered Multi-Task Generative Adversarial Network for Small Object Detection. Sensors 2021, 21, 5194. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Liu, L.; Wang, F.; Li, J.; Pan, J. License Plate Image Reconstruction Based on Generative Adversarial Networks. Remote Sens. 2021, 13, 3018. [Google Scholar] [CrossRef]
- Al-Shargabi, A.A.; Alshobaili, J.F.; Alabdulatif, A.; Alrobah, N. COVID-CGAN: Efficient Deep Learning Approach for COVID-19 Detection Based on CXR Images Using Conditional GANs. Appl. Sci. 2021, 11, 7174. [Google Scholar] [CrossRef]
- Sun, S.; Chen, C.; Carin, L. Learning structured weight uncertainty in bayesian neural networks. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1283–1292. [Google Scholar]
- Li, C.; Stevens, A.; Chen, C.; Pu, Y.; Gan, Z.; Carin, L. Learning weight uncertainty with stochastic gradient mcmc for shape classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5666–5675. [Google Scholar]
- Teye, M.; Azizpour, H.; Smith, K. Bayesian Uncertainty Estimation for Batch Normalized Deep Networks. In Proceedings of the International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; pp. 4914–4923. [Google Scholar]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Kulharia, V.; Namboodiri, V.P.; Torr, P.H.; Dokania, P.K. Multi-agent diverse generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8513–8521. [Google Scholar]
- Xu, T.; Zhang, P.; Huang, Q.; Zhang, H.; Gan, Z.; Huang, X.; He, X. Attngan: Fine-grained text to image generation with attentional generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 1316–1324. [Google Scholar]
- Saito, Y.; Takamichi, S.; Saruwatari, H. Statistical parametric speech synthesis incorporating generative adversarial networks. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Antipov, G.; Baccouche, M.; Dugelay, J.L. Face aging with conditional generative adversarial networks. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2089–2093. [Google Scholar]
- Liu, Y.; Qin, Z.; Wan, T.; Luo, Z. Auto-painter: Cartoon image generation from sketch by using conditional Wasserstein generative adversarial networks. Neurocomputing 2018, 311, 78–87. [Google Scholar] [CrossRef]
- Bessler, W.; Opfer, H.; Wolff, D. Multi-asset portfolio optimization and out-of-sample performance: An evaluation of Black–Litterman, mean-variance, and naïve diversification approaches. Eur. J. Financ. 2017, 23, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, J.L.; Peskir, G. Optimal mean-variance portfolio selection. Math. Financ. Econ. 2017, 11, 137–160. [Google Scholar] [CrossRef] [Green Version]
- Laengle, S.; Loyola, G.; Merigo, J.M. Mean-variance portfolio selection with the ordered weighted average. IEEE Trans. Fuzzy Syst. 2017, 25, 350–362. [Google Scholar] [CrossRef]
- Yun, H.; Lee, M.; Kang, Y.S.; Seok, J. Portfolio management via two-stage deep learning with a joint cost. Expert Syst. Appl. 2020, 143, 113041. [Google Scholar] [CrossRef]
- Lee, M.; Seok, J. Regularization Methods for Generative Adversarial Networks: An Overview of Recent Studies. arXiv 2020, arXiv:2005.09165. [Google Scholar]
- Huang, G.; Liu, S.; Van der Maaten, L.; Weinberger, K.Q. Condensenet: An efficient densenet using learned group convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 2752–2761. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
Methods | Point Estimation vs. Target | Uncertainty vs. Error |
---|---|---|
Ridge regression | 0.055 | N/A * |
Lasso regression | 0.047 | N/A * |
Random forest | 0.050 ± 0.002 | N/A * |
ANN-3 | 0.065 ± 0.019 | N/A * |
ANN-5 | 0.065 ± 0.021 | N/A * |
ANN-7 | 0.052 ± 0.032 | N/A * |
BNN-3 | 0.021 ± 0.019 | 0.102 ± 0.081 |
BNN-5 | N/A † | N/A † |
cGAN-UC-3 | 0.076 ± 0.025 | 0.259 ± 0.031 |
cGAN-UC-5 | 0.084 ± 0.052 | 0.278 ± 0.021 |
cGAN-UC-7 | 0.056 ± 0.076 | 0.315 ± 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Seok, J. Estimation with Uncertainty via Conditional Generative Adversarial Networks. Sensors 2021, 21, 6194. https://doi.org/10.3390/s21186194
Lee M, Seok J. Estimation with Uncertainty via Conditional Generative Adversarial Networks. Sensors. 2021; 21(18):6194. https://doi.org/10.3390/s21186194
Chicago/Turabian StyleLee, Minhyeok, and Junhee Seok. 2021. "Estimation with Uncertainty via Conditional Generative Adversarial Networks" Sensors 21, no. 18: 6194. https://doi.org/10.3390/s21186194
APA StyleLee, M., & Seok, J. (2021). Estimation with Uncertainty via Conditional Generative Adversarial Networks. Sensors, 21(18), 6194. https://doi.org/10.3390/s21186194