Deep and Machine Learning Using SEM, FTIR, and Texture Analysis to Detect Polysaccharide in Raspberry Powders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Scaning Electron Microscopy
2.3. Image Processing
2.4. The Structure of Neural Network
- Input layer (InputLayer) i.e., numerical data in the form of 5 texture descriptors;
- Hidden layers, for which the range of layers was set between 10 and 25;
- Nine output neurons in the output layer comprising 9 classes of the research trials of raspberry powders with activating function Tanh. Tanh function: Tanh squashes the real-valued number into the range [–1, 1]. The output is zero-centered.
- Input layer (InputLayer) i.e., a 256 × 256 × 1 bitmap with values of linear calibration between 0 and 1 (with discreet values among which, each two neighboring elements lie on the scale in the distance of 1/256). This is the initial tensor, which was sent to the first hidden layer;
- One standard convolutional layer (Conv2D), for each loaded image, 32 filters were used;
- Thirteen depthwise layers in separable convolution, where the depth of tensors (number of filters), depending on the number of layers, was 32, 64, 128, 256, or 1024. Each convolutional layer of this type consisted of sublayers in the given order:
- ○
- Normalization (BatchNormalization), whose aim is to accelerate and increase the stability of artificial neural networks via the normalization of input layers via new centering or new calibration [35];
- ○
- Activation (activation function ReLu) [17];
- ○
- Depthwise convolution 2D;
- ○
- Activation (activation function ReLu);
- ○
- Pointwise convolution 2D;
- ○
- Normalization (BatchNormalization);
- Sample operation global_average_pooling2d (unlike max_pooling used in standard convolutional layers). During global average joining, the size of the pool is still set at the size of the input data layer, but instead of maximum size, an average from the pool is taken into consideration. The aim of this action in building the model was to reduce the number of data transferred to fully-connected or densely-connected layers in the classifier;
- Operation dropout parameter set at 0.001. The dropout technique depends on the random selection of the determined number of characteristics in the input layer and on replacing them with zeros [36];
- Nine neurons in the output layer with activation function “softmax”. The activation function that was used is a mathematical function, with the help of which, the vector of numbers is transformed into the vector of probabilities. As a result of probability, each value is proportional to the relative scale of each vector value.
2.5. Fourier Transform Infrared Spectroscopy
2.6. Statistica
3. Results and Discussion
3.1. MLP Learning
3.2. CNN Learning
3.3. FTIR S Pectroscopy
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Ahuja, J.K.C.; Burton-Freeman, B.M. Characterization of the nutrient profile of processed red raspberries for use in nutrition labeling and promoting healthy food choices. Nutr. Healthy Aging 2019, 5, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liu, N.; Fu, X.; Wang, L.; Yang, Y.; Ren, Y.; Liu, J.; Wang, L. Structural characteristics, biological, rheological and thermal properties of the polysaccharide and the degraded polysaccharide from raspberry fruits. Int. J. Biol. Macromol. 2019, 132, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Miranda-Garcia, O.; Adamson, A.; Sasaki, G.; Shay, N.F. Development of obesity is reduced in high-fat fed mice fed whole raspberries, raspberry juice concentrate, and a combination of the raspberry phytochemicals ellagic acid and raspberry ketone. J. Berry Res. 2016, 6, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Przybył, K.; Samborska, K.; Koszela, K.; Masewicz, Ł.; Pawlak, T. Artificial neural networks in the evaluation of the influence of the type and content of carrier on selected quality parameters of spray dried raspberry powders. Measurement 2021, in press. [Google Scholar]
- Przybył, K.; Masewicz, Ł.; Koszela, K.; Duda, A.; Szychta, M.; Gierz, Ł. An MLP artificial neural network for detection of the degree of saccharification of Arabic gum used as a carrier agent of raspberry powders. In Proceedings of the Thirteenth International Conference on Digital Image Processing, Singapore, 20–23 May 2021; Jiang, X., Fujita, H., Eds.; SPIE: Bellingham, WA, USA, 2021; Volume 11878, p. 93. [Google Scholar] [CrossRef]
- Cal, K.; Sollohub, K. Spray Drying Technique. I: Hardware and Process Parameters. J. Pharm. Sci. 2010, 99, 575–586. [Google Scholar] [CrossRef]
- Przybył, K.; Gawałek, J.; Koszela, K.; Wawrzyniak, J.; Gierz, L. Artificial neural networks and electron microscopy to evaluate the quality of fruit and vegetable spray-dried powders. Case study: Strawberry powder. Comput. Electron. Agric. 2018, 155, 314–323. [Google Scholar] [CrossRef]
- O’Donoghue, L.T.; Haque, M.K.; Kennedy, D.; Laffir, F.R.; Hogan, S.A.; O’Mahony, J.A.; Murphy, E.G. Influence of particle size on the physicochemical properties and stickiness of dairy powders. Int. Dairy J. 2019, 98, 54–63. [Google Scholar] [CrossRef]
- Samborska, K. Powdered honey-drying methods and parameters, types of carriers and drying aids, physicochemical properties and storage stability. Trends Food Sci. Technol. 2019, 88, 133–142. [Google Scholar] [CrossRef]
- Przybył, K.; Wawrzyniak, J.; Koszela, K.; Adamski, F.; Gawrysiak-Witulska, M. Application of Deep and Machine Learning Using Image Analysis to Detect Fungal Contamination of Rapeseed. Sensors 2020, 20, 7305. [Google Scholar] [CrossRef]
- Tadeusiewicz, R. Neural networks: A comprehensive foundation. Control Eng. Pract. 1995, 3, 746–747. [Google Scholar] [CrossRef]
- Przybył, K.; Gawałek, J.; Koszela, K.; Przybył, J.; Rudzińska, M.; Gierz, Ł.; Domian, E. Neural image analysis and electron microscopy to detect and describe selected quality factors of fruit and vegetable spray-dried powders—Case study: Chokeberry powder. Sensors 2019, 19, 4413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przybył, K.; Duda, A.; Koszela, K.; Stangierski, J.; Polarczyk, M.; Gierz, Ł. Classification of Dried Strawberry by the Analysis of the Acoustic Sound with Artificial Neural Networks. Sensors 2020, 20, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majidnezhad, V.; Kheidorov, I. An ANN-based Method for Detecting Vocal Fold Pathology. Int. J. Comput. Appl. 2013. [Google Scholar] [CrossRef]
- Gierz, Ł.; Przybył, K.; Koszela, K.; Duda, A.; Ostrowicz, W. The use of image analysis to detect seed contamination—A case study of triticale. Sensors 2021, 21, 151. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Y.; Liu, W.; Li, S.; Liu, J. CapsNet, CNN, FCN: Comparative Performance Evaluation for Image Classification. Int. J. Mach. Learn. Comput. 2019, 9, 840–848. [Google Scholar] [CrossRef]
- Chollet, F. Deep Learning; Working with Python and the Keras Library; MIT Press: Cambridge, MA, USA, 2019; pp. 5–368. [Google Scholar]
- Niedbała, G. Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Rapeseed. Sustainability 2019, 11, 533. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Zhang, Y.; Zhang, X.; Li, L.; Liou, F. Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network. Appl. Sci. 2020, 10, 545. [Google Scholar] [CrossRef] [Green Version]
- Pfrommer, J.; Zimmerling, C.; Liu, J.; Kärger, L.; Henning, F.; Beyerer, J. Optimisation of manufacturing process parameters using deep neural networks as surrogate models. Procedia CIRP 2018, 72, 426–431. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Gharibzahedi, S.M.T.; Emam-Djomeh, Z.; Razavi, S.H.; Jafari, S.M. Mechanical behavior of lentil seeds in relation to their physicochemical and microstructural characteristics. Int. J. Food Prop. 2014, 17, 545–558. [Google Scholar] [CrossRef]
- Przybył, K.; Gawałek, J.; Koszela, K. Application of artificial neural network for the quality-based classification of spray-dried rhubarb juice powders. J. Food Sci. Technol. 2020, 1–11. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Clausi, D.A. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 2002, 28, 45–62. [Google Scholar] [CrossRef]
- Unser, M. Texture classification and segmentation using wavelet frames. IEEE Trans. Image Process. 1995, 4, 1549–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jedlińska, A.; Wiktor, A.; Witrowa-Rajchert, D.; Derewiaka, D.; Wołosiak, R.; Matwijczuk, A.; Niemczynowicz, A.; Samborska, K. Quality Assessment of Honey Powders Obtained by High- and Low-Temperature Spray Drying. Appl. Sci. 2020, 11, 224. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, H.; Chen, J.; Ao, Q. Ftir, xrd and sem analysis of ginger powders with different size. J. Food Process. Preserv. 2015, 39, 2017–2026. [Google Scholar] [CrossRef]
- Samborska, K.; Jedlińska, A.; Wiktor, A.; Derewiaka, D.; Wołosiak, R.; Matwijczuk, A.; Jamróz, W.; Skwarczyńska-Maj, K.; Kiełczewski, D.; Błażowski, Ł.; et al. The Effect of Low-Temperature Spray Drying with Dehumidified Air on Phenolic Compounds, Antioxidant Activity, and Aroma Compounds of Rapeseed Honey Powders. Food Bioprocess Technol. 2019, 12, 919–932. [Google Scholar] [CrossRef] [Green Version]
- Przybył, K.; Ryniecki, A.; Niedbała, G.; Mueller, W.; Boniecki, P.; Zaborowicz, M.; Koszela, K.; Kujawa, S.; Kozłowski, R.J. Software supporting definition and extraction of the quality parameters of potatoes by using image analysis. In Proceedings of the Eighth International Conference on Digital Image Processing (ICDIP 2016), Chengu, China, 20–22 May 2016; Volume 10033, p. 100332L. [Google Scholar] [CrossRef]
- Pieniazek, F.; Messina, V. Scanning electron microscopy combined with image processing technique: Microstructure and texture analysis of legumes and vegetables for instant meal. Microsc. Res. Tech. 2016, 79, 267–275. [Google Scholar] [CrossRef]
- ImageJ User Guide. IJ 1.46r; 2003. Available online: https://imagej.nih.gov/ij/docs/guide/ (accessed on 20 August 2021).
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Le, N.Q.K.; Yapp, E.K.Y.; Ou, Y.-Y.; Yeh, H.-Y. iMotor-CNN: Identifying molecular functions of cytoskeleton motor proteins using 2D convolutional neural network via Chou’s 5-step rule. Anal. Biochem. 2019, 575, 17–26. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456, PMLR 37. [Google Scholar]
- Li, X.; Kong, X.; Liu, Z.; Hu, Z.; Shi, C. A Novel Framework for Early Pitting Fault Diagnosis of Rotating Machinery Based on Dilated CNN Combined with Spatial Dropout. IEEE Access 2021, 9, 29243–29252. [Google Scholar] [CrossRef]
- Ghosh, D.; Chattopadhyay, P. Application of principal component analysis (PCA) as a sensory assessment tool for fermented food products. J. Food Sci. Technol. 2012, 49, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Singh, S.; Oh, J.; Canbulat, I.; Kang, W.H.; Hebblewhite, B.; Stacey, T.R. A combined approach for estimating horizontal principal stress magnitudes from borehole breakout data via artificial neural network and rock failure criterion. Int. J. Rock Mech. Min. Sci. 2020, 136, 104539. [Google Scholar] [CrossRef]
- Zhao, W. A Broyden-Fletcher-Goldfarb-hanno algorithm for reliability-based design optimization. Appl. Math. Model. 2021, 92, 447–465. [Google Scholar] [CrossRef]
- Nelli, F. Deep Learning with TensorFlow. In Python Data Analytics; Apress: Berkeley, CA, USA, 2018; pp. 49–486. [Google Scholar] [CrossRef]
- Kujawa, S.; Mazurkiewicz, J.; Mueller, W.; Gierz, Ł.; Przybył, K.; Wojcieszak, D.; Zaborowicz, M.; Koszela, K.; Boniecki, P. Identification of co-substrate composted with sewage sludge using convolutional neural networks. In Proceedings of the SPIE-The International Society for Optical Engineering, Guangzhou, China, 10–13 May 2019; Volume 11179. [Google Scholar]
- Wongphan, P.; Harnkarnsujarit, N. Characterization of starch, agar and maltodextrin blends for controlled dissolution of edible films. Int. J. Biol. Macromol. 2020, 156, 80–93. [Google Scholar] [CrossRef]
- Naumann, D. FT-IR and FT-NIR Raman spectroscopy in biomedical research. AIP Conf. Proc. 1998, 430, 96–109. [Google Scholar]
- Ramírez-Hernández, A.; Aguilar-Flores, C.; Aparicio-Saguilán, A. Fingerprint analysis of FTIR spectra of polymers containing vinyl acetate. DYNA 2019, 86, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Mudgil, D.; Barak, S.; Khatkar, B.S. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int. J. Biol. Macromol. 2012, 50, 1035–1039. [Google Scholar] [CrossRef]
- Melanie, H.; Susilowati, A.; Iskandar, Y.M.; Lotulung, P.D.; Andayani, D.G.S. Characterization of Inulin from Local Red Dahlia (Dahlia sp. L) Tubers by Infrared Spectroscopy. Procedia Chem. 2015, 16, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Hall-Beyer, M. GLCM Texture: A Tutorial v. 3.0 March 2017|Enhanced Reader; University of Calgary: Calgary, AB, Canada, 2017; pp. 2–75. [Google Scholar] [CrossRef]
- Boel, E.; Koekoekx, R.; Dedroog, S.; Babkin, I.; Vetrano, M.R.; Clasen, C.; Van den Mooter, G. Unraveling Particle Formation: From Single Droplet Drying to Spray Drying and Electrospraying. Pharmaceutics 2020, 12, 625. [Google Scholar] [CrossRef]
Name Research of Class | Type of Carrier | Ratio of Carrier |
---|---|---|
GA50 | Gum Arabic | 50% |
GA60 | Gum Arabic | 40% |
GA70 | Gum Arabic | 30% |
IN50 | Inulin | 50% |
IN60 | Inulin | 40% |
IN70 | Inulin | 30% |
MD50 | Maltodextrin | 50% |
MD60 | Maltodextrin | 40% |
MD70 | Maltodextrin | 30% |
Model ANN | MLPN | CNN |
---|---|---|
Training error | 0.033 | 0.015 |
Validation error | 0.016 | 0.086 |
Testing error | 0.047 | 0.093 |
Quality of learning | 0.967 | 0.998 |
Quality of validation | 0.953 | 0.956 |
Quality of testing | 0.984 | 0.952 |
Learning cases | 430 | 1023 |
Training algorithm | BFGS 65 | Adam |
Accuracy | 0.962 | 0.969 |
RMSE | 0.029 | 0.065 |
Layer (Type) | Output Shape | Param # |
---|---|---|
Input_tensor (InputLayer) | (None, 256, 256, 1) | 0 |
conv1_pad (ZeroPadding 2D) | (None, 256, 256, 1) | 0 |
conv1 (Conv2D) | (None, 128, 128, 32) | 288 |
conv1_bn (BatchNormalization) | (None, 128, 128, 32) | 128 |
conv1_relu (Relu) | (None, 128, 128, 32) | 0 |
conv1_dw_1 (DeptwiseConv2D) | (None, 128, 128, 32) | 288 |
conv1_bn (BatchNormalization) | (None, 128, 128, 32) | 128 |
conv1_relu (Relu) | (None, 128, 128, 32) | 0 |
conv_pw_1 (Con2D) | (None, 128, 128, 64) | 2048 |
conv_pw_bn (BatchNormalization) | (None, 128, 128, 64) | 256 |
conv_pw_relu (Relu) | (None, 128, 128, 64) | 0 |
conv_pad_2 (ZeroPadding 2D) | (None, 129, 129, 64) | 0 |
conv_dw_1 (DeptwiseConv2D) | (None, 64, 64, 64) | 576 |
conv_dw_2_bn (BatchNormalization) | (None, 64, 64, 64) | 256 |
conv_dw_2relu_ (Relu) | (None, 64, 64, 64) | 0 |
conv_pw_2 | (None, 64, 64, 128) | 8192 |
⋮ | ⋮ | ⋮ |
conv_dw_13 (DeptwiseConv2D) | (None, 8, 8, 1024) | 9216 |
conv_dw_13_bn (BatchNormalization) | (None, 8, 8, 1024) | 4096 |
conv_dw_13_relu (ReLU) | (None, 8, 8, 1024) | 0 |
conv_pw_13 (Conv2D) | (None, 8, 8, 1024) | 1,048,576 |
conv_pw_13_bn (BatchNormalization) | (None, 8, 8, 1024) | 4096 |
conv_pw_13_relu (ReLU) | (None, 8, 8, 1024) | 0 |
Name Research of Class | Entropy | Contrast | Correlation | |||
---|---|---|---|---|---|---|
GA50 | 9.44741 ± 0.07429 | e | 411.17285 ± 49.22679 | f | 0.00019 ± 0.00003 | e |
GA60 | 9.25423 ± 0.12064 | d | 363.11773 ± 50.70518 | e | 0.00016 ± 0.00002 | bc |
GA70 | 9.27491 ± 0.07331 | d | 325.60968 ± 32.00526 | d | 0.00018 ± 0.00002 | de |
IN50 | 9.16783 ± 0.11597 | bc | 278.80630 ± 24.96329 | c | 0.00016 ± 0.00002 | bcd |
IN60 | 9.10750 ± 0.13881 | ab | 306.03450 ± 28.23464 | cd | 0.00017 ± 0.00002 | cd |
IN70 | 9.07736 ± 0.11930 | a | 240.10396 ± 18.03900 | b | 0.00018 ± 0.00001 | de |
MD50 | 9.19857 ± 0.15313 | cd | 619.43057 ± 82.97847 | g | 0.00014 ± 0.00001 | a |
MD60 | 9.19922 ± 0.09826 | cd | 212.04252 ± 30.00097 | a | 0.00028 ± 0.00006 | f |
MD70 | 9.04692 ± 0.14894 | a | 325.23585 ± 30.58993 | d | 0.00015 ± 0.00001 | ab |
Name Research of Class | ASM | IDM | FTIR | |||
GA50 | 0.00099 ± 0.00065 | a | 0.11793 ± 0.00879 | a | 0.017993 ± 0.019006 | a |
GA60 | 0.40517 ± 1.86809 | b | 0.13977 ± 0.01456 | b | 0.009461 ± 0.014758 | b |
GA70 | 0.00090 ± 0.00103 | a | 0.13950 ± 0.00914 | b | 0.012608 ± 0.014599 | c |
IN50 | 0.00241 ± 0.00172 | a | 0.15096 ± 0.01822 | c | 0.014077 ± 0.016693 | c |
IN60 | 0.00301 ± 0.00197 | a | 0.15454 ± 0.01935 | cd | 0.014508 ± 0.016117 | d |
IN70 | 0.00224 ± 0.00163 | a | 0.16120 ± 0.01597 | de | 0.018740 ± 0.016393 | e |
MD50 | 0.00470 ± 0.00199 | a | 0.14930 ± 0.01573 | bc | 0.023208 ± 0.019160 | bc |
MD60 | 0.00016 ± 0.00001 | a | 0.11830 ± 0.00523 | a | 0.013685 ± 0.017191 | f |
MD70 | 0.00372 ± 0.00202 | a | 0.16977 ± 0.02016 | e | 0.033704 ± 0.025317 | e |
Desrciptor | ASM | Contrast | Correlation | IDM | Entropy |
---|---|---|---|---|---|
ASM | 1.000000 | ||||
Contrast | 0.011270 | 1.000000 | |||
Correlation | 0.041610 | −0.560466 | 1.000000 | ||
IDM | −0.053445 | 0.041667 | −0.521530 | 1.000000 | |
Entropy | 0.074450 | 0.167412 | 0.132865 | −0.885284 | 1.000000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybył, K.; Koszela, K.; Adamski, F.; Samborska, K.; Walkowiak, K.; Polarczyk, M. Deep and Machine Learning Using SEM, FTIR, and Texture Analysis to Detect Polysaccharide in Raspberry Powders. Sensors 2021, 21, 5823. https://doi.org/10.3390/s21175823
Przybył K, Koszela K, Adamski F, Samborska K, Walkowiak K, Polarczyk M. Deep and Machine Learning Using SEM, FTIR, and Texture Analysis to Detect Polysaccharide in Raspberry Powders. Sensors. 2021; 21(17):5823. https://doi.org/10.3390/s21175823
Chicago/Turabian StylePrzybył, Krzysztof, Krzysztof Koszela, Franciszek Adamski, Katarzyna Samborska, Katarzyna Walkowiak, and Mariusz Polarczyk. 2021. "Deep and Machine Learning Using SEM, FTIR, and Texture Analysis to Detect Polysaccharide in Raspberry Powders" Sensors 21, no. 17: 5823. https://doi.org/10.3390/s21175823
APA StylePrzybył, K., Koszela, K., Adamski, F., Samborska, K., Walkowiak, K., & Polarczyk, M. (2021). Deep and Machine Learning Using SEM, FTIR, and Texture Analysis to Detect Polysaccharide in Raspberry Powders. Sensors, 21(17), 5823. https://doi.org/10.3390/s21175823