Evaluation of Three Portable Optical Sensors for Non-Destructive Diagnosis of Nitrogen Status in Winter Wheat
<p>Three study sites in the Jiangsu province of China.</p> "> Figure 2
<p>Images of the (<b>a</b>) SPAD-502 meter, (<b>b</b>) Dualex 4 Scientific+ sensor, and (<b>c</b>) RapidSCAN CS-45 sensor.</p> "> Figure 3
<p>Dynamic variation in (<b>a</b>) SPAD, (<b>b</b>) chl, (<b>c</b>) Flav, (<b>d</b>) NBI, (<b>e</b>) NDRE, and (<b>f</b>) NDVI at the indicated days after sowing (DAS). Data were obtained from Experiment 1 using the XM30 cultivar. Vertical bars at each growth stage represent the standard error.</p> "> Figure 4
<p>The exponential relationship between the SPAD and N nutrition index (NNI) across experiments 1–3 at (<b>a</b>) jointing, (<b>b</b>) booting, (<b>c</b>) flowering, (<b>d</b>) filling, and (<b>e</b>) all growth stages/the exponential relationship between the NBI and N nutrition index (NNI) across experiments 1–3 at (<b>f</b>) jointing, (<b>g</b>) booting, (<b>h</b>) flowering, (<b>i</b>) filling, and (<b>j</b>) all growth stages/the exponential relationship between the NDRE and N nutrition index (NNI) across experiments 1–3 at (<b>k</b>) jointing, (<b>l</b>) booting, (<b>m</b>) flowering, (<b>n</b>) filling, and (<b>o</b>) all growth stages. Black lines indicate regression lines.</p> "> Figure 5
<p>N diagnosis maps (experiment 1) based on the SPAD at the (<b>a</b>) jointing, (<b>b</b>) booting, (<b>c</b>) flowering, and (<b>d</b>) filling stage. N diagnosis maps based on the NBI at (<b>e</b>) jointing, (<b>f</b>) booting, (<b>g</b>) flowering, and (<b>h</b>) filling stage. N diagnosis maps based on the NDRE at (<b>i</b>) jointing, (<b>j</b>) booting, (<b>k</b>) flowering, and (<b>l</b>) filling stage. V1 and V2 in (<b>a</b>) represent XM30 and HM20 cultivars. N1, N2, N3, and N4 in (<b>a</b>) represent 0, 90, 180, 270, and 360 kg N ha<sup>−1</sup> treatments, respectively, in Experiment 1.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Spectral Data Collection
2.3. Plant Sampling and Measurements
2.4. Data Analysis
3. Results and Analysis
3.1. Variability of Nitrogen Status Indicators
3.2. Dynamic Changes of Six Sensor-Based Indices under Different N Treatments
3.3. Relationship between the Six Sensors-Based Indices and Four N Indicators
3.4. Relationship between the Optimal Index of Each Sensor and N Nutrition Index
3.5. N Diagnosis of Winter Wheat Based on the SPAD, NBI, and NDRE at Different Growth Stages
4. Discussion
4.1. Wheat N Status Assessments Based on the Leaf and Canopy Sensors
4.2. Wheat N Nutrition Diagnosis Based on the Optimal Indices (SPAD, NBI, and NDRE) of Three Sensors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Stewart, B.A.; Zhang, F. Long-term experiments for sustainable nutrient management in China. A review. Agron. Sustain. Devlop. 2011, 31, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Mulla, D.J.; Hernandez, J.A.; Wiebers, M.; Robert, P.C. Potential impact of precision nitrogen management on corn yield, protein content, and test weight. Soil Sci. Soc. Am. J. 2007, 71, 1490–1499. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Dong, R.; Miao, Y.; Wang, X.; Chen, Z.; Yuan, F.; Zhang, W.; Li, H. Estimating Plant Nitrogen Concentration of Maize Using a Leaf Fluorescence Sensor across Growth Stages. Remote Sens. 2020, 12, 1139. [Google Scholar] [CrossRef] [Green Version]
- Justes, E.; Mary, B.; Meynard, J.M.; Machet, J.M.; Thelier-Huche, L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. 1994, 74, 397–407. [Google Scholar] [CrossRef]
- Lemaire, G.; Jeuffroy, M.-H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Xia, T.; Miao, Y.; Wu, D.; Shao, H.; Khosla, R.; Mi, G. Active Optical Sensing of Spring Maize for In-Season Diagnosis of Nitrogen Status Based on Nitrogen Nutrition Index. Remote. Sens. 2016, 8, 605. [Google Scholar] [CrossRef] [Green Version]
- Prost, L.; Jeuffroy, M.H. Replacing the nitrogen nutrition index by the chlorophyll meter to assess wheat N status. Agron. Sustain. Dev. 2007, 27, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Souza, R.; Pea-Fleitas, M.T.; Thompson, R.B.; Gallardo, M.; Padilla, F.M. Assessing Performance of Vegetation Indices to Estimate Nitrogen Nutrition Index in Pepper. Remote Sens. 2020, 12, 763. [Google Scholar] [CrossRef] [Green Version]
- Watson, M.E.; Galliher, T.L. Comparison of Dumas and Kjeldahl methods with automatic analyzers on agricultural samples under routine rapid analysis conditions. Commun. Soil Sci. Plant Anal. 2001, 32, 2007–2019. [Google Scholar] [CrossRef]
- Xue, X.; Wang, J.; Wang, Z.; Guo, W.; Zhou, Z. Determination of a critical dilution curve for nitrogen concentration in cotton. J. Plant Nutr. Soil Sci. 2007, 170, 811–817. [Google Scholar]
- Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R.V. A Review of Methods for Sensing the Nitrogen Status in Plants: Advantages, Disadvantages and Recent Advances. Sensors 2013, 13, 10823–10843. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Hu, Y.; Zhang, H.; Schmidhalter, U. Evaluation of Both SPAD Reading and SPAD Index on Estimating the Plant Nitrogen Status of Winter Wheat. Int. J. Plant Prod. 2020, 14, 67–75. [Google Scholar] [CrossRef]
- Ravier, C.; Quemada, M.; Jeuffroy, M. Use of a chlorophyll meter to assess nitrogen nutrition index during the growth cycle in winter wheat. Field Crop. Res. 2017, 214, 73–82. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Masdoumier, G.; Ben Ghozlen, N.; Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012, 146, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, X.; Ma, Y.; Zhang, R.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. A Comparative Assessment of Measures of Leaf Nitrogen in Rice Using Two Leaf-Clip Meters. Sensors 2020, 20, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, T.; Shang, J.; Chen, J.M.; Liu, J.; Qian, B.; Ma, B.; Morrison, M.J.; Zhang, C.; Liu, Y.; Shi, Y.; et al. Assessment of Portable Chlorophyll Meters for Measuring Crop Leaf Chlorophyll Concentration. Remote Sens. 2019, 11, 2706. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, N.; Wang, Z.; Bélec, C. Evaluation of the Dualex for the assessment of corn nitrogen status. J. Plant Nutr. 2007, 30, 1355–1369. [Google Scholar] [CrossRef]
- Tremblay, N.; Bélec, C.; Jenni, S.; Fortier, E.; Mellgren, R. The Dualex—A New Tool to Determine Nitrogen Sufficiency in Broccoli. Acta Hortic. 2009, 824, 121–132. [Google Scholar] [CrossRef]
- Tremblay, N.; Wang, Z.; Bélec, C. Performance of Dualex in spring wheat for crop nitrogen status assessment, Yield predication and estimation of soil nitrate content. J. Plant Nutr. 2010, 33, 57–70. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Quemada, M.; Alonso-Ayuso, M.; Lizaso, J.I.; Martín-Lammerding, D. Predicting N Status in Maize with Clip Sensors: Choosing Sensor, Leaf Sampling Point, and Timing. Sensors 2019, 19, 3881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lejealle, S.; Evain, S.; Cerovic, Z.G. Multiplex: A new diagnostic tool for management of nitrogen fertilization of turfgrass. In Proceedings of the 10th International Conference on Precision Agriculture, Denver, CO, USA, 18–21 July 2010. [Google Scholar]
- Chen, P.; Haboudane, D.; Tremblay, N.; Wang, J.; Vigneault, P.; Li, B. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ. 2010, 114, 1987–1997. [Google Scholar] [CrossRef]
- Feng, W.; Yao, X.; Zhu, Y.; Tian, Y.C.; Cao, W. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 2008, 28, 394–404. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, J.H.; Liu, L.Y.; Huang, W.J.; Zhao, C.J.; Wang, C.Z. Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crop. Res. 2004, 90, 311–321. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, C.; Wang, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Using an Active Sensor to Develop New Critical Nitrogen Dilution Curve for Winter Wheat. Sensors 2020, 20, 1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranguren, M.; Castellón, A.; Aizpurua, A. Topdressing nitrogen recommendation in wheat after applying organic manures: The use of field diagnostic tools. Nutr. Cycl. Agroecosyst. 2018, 110, 89–103. [Google Scholar] [CrossRef]
- Miller, J.J.; Schepers, J.S.; Shapiro, C.A.; Arneson, N.J.; Eskridge, K.M.; Oliveira, M.C.; Giesler, L.J. Characterizing soybean vigor and productivity using multiple crop canopy sensor readings. Field Crop. Res. 2018, 216, 22–31. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Thompson, T. Coincident detection of crop water stress, nitrogen status, and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; pp. 16–19. [Google Scholar]
- Tucker, C. Red and photographic infrared linear combination for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, X.; Liang, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Using a Portable Active Sensor to Monitor Growth Parameters and Predict Grain Yield of Winter Wheat. Sensors 2019, 19, 1108. [Google Scholar] [CrossRef] [Green Version]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen -total. In Methods of Soil Analysis. In Chemical and Microbial Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, and Soil Science Society: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Cao, Q.; Miao, Y.; Shen, J.; Yuan, F.; Cheng, S.; Cui, Z. Evaluating Two Crop Circle Active Canopy Sensors for In-Season Diagnosis of Winter Wheat Nitrogen Status. Agronomy 2018, 8, 201. [Google Scholar] [CrossRef] [Green Version]
- Lillesand, T.; Kiefer, R.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 575–581. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Padilla, F.M.; Gallardo, M.; Teresa Peña-Fleitas, M.; de Souza, R.; Thompson, R.B. Proximal Optical Sensors for Nitrogen Management of Vegetable Crops: A Review. Sensors 2018, 18, 2083. [Google Scholar] [CrossRef] [Green Version]
- Cartelat, A.; Cerovic, Z.G.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.L.; Barbottin, A.; Jeuffroy, M.H.; Gate, P.; Agati, G.; et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crop. Res. 2005, 91, 35–49. [Google Scholar] [CrossRef]
- Padilla, F.M.; Teresa Pena-Fleitas, M.; Gallardo, M.; Thompson, R.B. Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. Eur. J. Agron. 2014, 58, 39–52. [Google Scholar] [CrossRef]
- Taskos, D.G.; Koundouras, S.; Stamatiadis, S.; Zioziou, E.; Nikolaou, N.; Karakioulakis, K.; Theodorou, N. Using active canopy sensors and chlorophyll meters to estimate grapevine nitrogen status and productivity. Precis. Agric. 2015, 16, 77–98. [Google Scholar] [CrossRef]
- Aula, L.; Omara, P.; Nambi, E.; Oyebiyi, F.B.; Raun, W.R. Review of Active Optical Sensors for Improving Winter Wheat Nitrogen Use Efficiency. Agronomy 2020, 10, 1157. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, K.; Tang, C.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Estimation of Rice Growth Parameters Based on Linear Mixed-Effect Model Using Multispectral Images from Fixed-Wing Unmanned Aerial Vehicles. Remote Sens. 2019, 11, 1371. [Google Scholar] [CrossRef] [Green Version]
- Ata-Ul-Karim, S.T.; Cao, Q.; Zhu, Y.; Tang, L.; Rehmani, A.; Cao, W. Non-destructive Assessment of Plant Nitrogen Parameters Using Leaf Chlorophyll Measurements in Rice. Front. Plant Sci. 2016, 7, 1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, P.; Kaur, A.; Nigan, R.; Gill, A.; Singh, J.; Sandhu, S. Spectral indices of wheat cultivars at different growth stages under Punjab conditions. J. Agrometeorol. 2018, 19, 160–165. [Google Scholar]
- Huang, S.; Miao, Y.; Yuan, F.; Cao, Q.; Ye, H.; Lenz-Wiedemann, V.I.S.; Bareth, G. In-Season Diagnosis of Rice Nitrogen Status Using Proximal Fluorescence Canopy Sensor at Different Growth Stages. Remote Sens. 2019, 11, 1184. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Miao, Y.; Shi, W.; Li, J.; Yuan, F. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor. Sci. Rep. 2017, 7, 14073. [Google Scholar] [CrossRef] [PubMed]
- Ata-UI-Karim, S.; Liu, X.; Lu, Z.; Zheng, H.; Cao, W.; Zhu, Y. Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crop. Res. 2017, 201, 32–40. [Google Scholar] [CrossRef]
- Zhang, K.; Yuan, Z.; Yang, T.; Lu, Z.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Chlorophyll meter-based nitrogen fertilizer optimization algorithm and nitrogen nutrition index for in-season fertilization of paddy rice. Agron. J. 2020, 112, 288–300. [Google Scholar] [CrossRef]
- Bean, G.M.; Kitchen, N.R.; Camberato, J.J.; Ferguson, R.B.; Fernandez, F.G.; Franzen, D.W.; Laboski, C.A.M.; Nafziger, E.D.; Sawyer, J.E.; Scharf, P.C.; et al. Active-Optical Reflectance Sensing Corn Algorithms Evaluated over the United States Midwest Corn Belt. Agron. J. 2018, 110, 2552–2565. [Google Scholar] [CrossRef] [Green Version]
- Mistele, B.; Schmidhalter, U. Spectral measurements of the total aerial N and biomass dry weight in maize using a quadrilateral-view optic. Field Crop. Res. 2008, 106, 94–103. [Google Scholar] [CrossRef]
- Argento, F.; Anken, T.; Abt, F.; Vogelsanger, E.; Walter, A.; Liebisch, F. Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data. Precis. Agric. 2021, 22, 364–386. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Front. Plant Sci. 2018, 9, 936. [Google Scholar] [CrossRef]
Experiment No. Year | Location | Plot Size (m2) | Cultivar | N Rate (kg ha−1) | Sampling Stage (Date) |
---|---|---|---|---|---|
1 2015–2016 | Sihong (33.37° N,118.26° E) | 42 (6 m × 7 m) | Xumai30 (XM30) Huaimai20 (HM20) | 0 90 180 270 360 | Jointing (5 April) Booting (15 April) Heading (22 April) Flowering (26 April) Filling (4 May) |
2 2016–2017 | Rugao (32.27° N, 120.75° E) | 30 (5 m × 6 m) | Yangmai15 (YM15) Yangmai16 (YM16) | 0 150 300 | Jointing (27 March) Booting (11 April) Flowering (22 April) Filling (7 May) |
3 2017–2018 | Xinghua (33.08° N, 119.98° E) | 63 (7 m × 9 m) | Zhenmai12 (ZM12) Yangmai23 (YM23) Ningmai13 (NM13) | 0 90 180 270 360 | Jointing (9 April) Booting (15 April) Flowering (24 April) Filling (9 May) |
Sensor Information | Chlorophyll Meter | Fluorescence Sensor | Reflectance Sensor |
---|---|---|---|
Sensor name | SPAD-502 | Dualex 4 Scientific+ | RapidScan CS-45 |
Manufacturer | Minolta Camera Co. (Osaka, Japan) | Force-A (Orsay, France) | Holland Scientific (Lincoln, NE, USA) |
Measurement scale | Leaf | Leaf | Canopy |
Field of view | - | - | 10°–45° |
Working height | - | - | 0.3–3.0 m |
Measurement area | 6 mm2 | 20 mm2 | Dependent on measurement height |
Measuring Principle | Transmittance | Fluorescence | Reflectance |
Spectral band | Red (650 nm) and near infrared (940 nm) | UV (375 nm), red (655 nm), red-edge (710 nm), and near infrared (850 nm) | Red (670 nm), red-edge (730 nm), and near infrared (780 nm) |
Output parameter | SPAD value | Chl, Flav, NBI | Reflectance (670, 730, 780 nm); NDRE, NDVI |
Abbreviation | SPAD meter | Dualex | RS sensor |
Parameter | Growth Stage | N | Min. | Max. | SD a | CV b (%) |
---|---|---|---|---|---|---|
LNC (%) | Jointing | 93 | 1.78 | 5.22 | 1.03 | 30.10 |
Booting | 93 | 2.14 | 5.39 | 0.84 | 23.35 | |
Flowering | 93 | 2.01 | 5.32 | 0.86 | 23.90 | |
Filling | 93 | 1.59 | 4.31 | 0.72 | 23.94 | |
All | 372 | 1.59 | 5.39 | 0.90 | 26.44 | |
LNA (kg ha−1) | Jointing | 93 | 8.64 | 158.33 | 40.01 | 64.23 |
Booting | 93 | 11.04 | 156.86 | 36.02 | 57.39 | |
Flowering | 93 | 11.55 | 123.44 | 26.75 | 50.93 | |
Filling | 93 | 5.51 | 90.58 | 22.23 | 55.39 | |
All | 372 | 5.51 | 144.86 | 33.22 | 61.04 | |
PNC (%) | Jointing | 93 | 1.06 | 3.50 | 0.71 | 34.36 |
Booting | 93 | 0.85 | 3.17 | 0.62 | 32.23 | |
Flowering | 93 | 0.71 | 2.61 | 0.50 | 31.34 | |
Filling | 93 | 0.68 | 2.04 | 0.36 | 27.59 | |
All | 372 | 0.68 | 3.50 | 0.64 | 37.23 | |
PNA (kg ha−1) | Jointing | 93 | 15.39 | 257.46 | 61.75 | 59.98 |
Booting | 93 | 21.27 | 274.88 | 58.92 | 51.29 | |
Flowering | 93 | 28.63 | 276.51 | 57.71 | 46.14 | |
Filling | 93 | 33.48 | 268.35 | 57.07 | 42.66 | |
All | 372 | 15.39 | 276.51 | 59.77 | 50.16 | |
NNI | Jointing | 93 | 0.34 | 1.92 | 0.45 | 46.37 |
Booting | 93 | 0.30 | 1.84 | 0.40 | 40.89 | |
Flowering | 93 | 0.33 | 1.65 | 0.34 | 37.20 | |
Filling | 93 | 0.34 | 1.41 | 0.28 | 33.10 | |
All | 372 | 0.30 | 1.92 | 0.38 | 40.45 |
Parameter | Sensor | Index | Jointing Stage | Booting Stage | Flowering Stage | Filling Stage | All Stage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | RE (%) | R2 | RMSE | RE (%) | R2 | RMSE | RE (%) | R2 | RMSE | RE (%) | R2 | RMSE | RE (%) | |||
LNC (%) | SPAD | SPAD | 0.44 | 0.77 | 25.08 | 0.59 | 0.53 | 16.25 | 0.25 | 0.78 | 21.68 | 0.60 | 0.46 | 16.28 | 0.39 | 0.70 | 21.21 |
Dualex | NBI | 0.79 | 0.47 | 13.43 | 0.66 | 0.50 | 14.48 | 0.36 | 0.67 | 20.02 | 0.71 | 0.39 | 14.19 | 0.61 | 0.56 | 16.74 | |
Chl | 0.68 | 0.58 | 18.66 | 0.57 | 0.55 | 16.27 | 0.25 | 0.79 | 22.44 | 0.65 | 0.44 | 17.20 | 0.42 | 0.68 | 20.00 | ||
Flav | 0.66 | 0.60 | 19.21 | 0.43 | 0.63 | 19.22 | 0.27 | 0.74 | 21.34 | 0.50 | 0.50 | 19.24 | 0.51 | 0.62 | 20.70 | ||
RS | NDRE | 0.79 | 0.47 | 15.02 | 0.75 | 0.42 | 11.84 | 0.61 | 0.53 | 15.79 | 0.70 | 0.39 | 13.80 | 0.70 | 0.49 | 15.03 | |
NDVI | 0.72 | 0.55 | 18.61 | 0.56 | 0.55 | 17.05 | 0.56 | 0.57 | 17.86 | 0.62 | 0.44 | 19.45 | 0.64 | 0.54 | 19.03 | ||
LNA (kg ha−1) | SPAD | SPAD | 0.36 | 29.85 | 80.50 | 0.54 | 24.86 | 67.24 | 0.29 | 24.32 | 62.51 | 0.46 | 17.69 | 53.04 | 0.29 | 29.11 | 78.15 |
Dualex | NBI | 0.70 | 23.50 | 67.38 | 0.63 | 22.31 | 52.52 | 0.49 | 18.47 | 55.47 | 0.58 | 14.35 | 48.33 | 0.53 | 23.46 | 59.49 | |
Chl | 0.51 | 28.81 | 81.25 | 0.50 | 26.12 | 69.43 | 0.27 | 24.73 | 69.82 | 0.52 | 15.40 | 54.64 | 0.31 | 28.51 | 78.51 | ||
Flav | 0.50 | 30.23 | 83.25 | 0.49 | 28.32 | 70.21 | 0.49 | 18.95 | 58.39 | 0.50 | 15.55 | 60.67 | 0.53 | 23.43 | 68.19 | ||
RS | NDRE | 0.87 | 15.04 | 24.72 | 0.77 | 17.71 | 24.75 | 0.78 | 12.39 | 24.81 | 0.66 | 13.62 | 42.12 | 0.67 | 19.79 | 40.55 | |
NDVI | 0.86 | 16.27 | 37.82 | 0.68 | 20.55 | 37.09 | 0.74 | 13.65 | 33.63 | 0.66 | 15.49 | 44.25 | 0.63 | 21.43 | 42.00 | ||
PNC (%) | SPAD | SPAD | 0.36 | 0.53 | 31.75 | 0.50 | 0.44 | 26.44 | 0.30 | 0.42 | 29.56 | 0.57 | 0.24 | 18.22 | 0.28 | 0.55 | 33.85 |
Dualex | NBI | 0.76 | 0.36 | 17.22 | 0.65 | 0.36 | 21.85 | 0.50 | 0.35 | 24.04 | 0.70 | 0.19 | 15.63 | 0.49 | 0.46 | 27.44 | |
Chl | 0.64 | 0.44 | 21.24 | 0.51 | 0.43 | 26.02 | 0.29 | 0.42 | 29.24 | 0.69 | 0.21 | 17.93 | 0.29 | 0.54 | 32.28 | ||
Flav | 0.61 | 0.45 | 24.84 | 0.47 | 0.45 | 29.61 | 0.32 | 0.41 | 32.47 | 0.44 | 0.27 | 22.63 | 0.45 | 0.47 | 31.85 | ||
RS | NDRE | 0.72 | 0.39 | 21.73 | 0.74 | 0.32 | 18.41 | 0.73 | 0.26 | 18.35 | 0.74 | 0.18 | 14.81 | 0.51 | 0.45 | 27.34 | |
NDVI | 0.57 | 0.48 | 28.37 | 0.55 | 0.41 | 27.36 | 0.50 | 0.35 | 27.65 | 0.50 | 0.25 | 22.97 | 0.47 | 0.47 | 32.41 | ||
PNA (kg ha−1) | SPAD | SPAD | 0.36 | 52.96 | 82.88 | 0.54 | 41.29 | 58.97 | 0.23 | 50.33 | 65.98 | 0.34 | 46.28 | 56.56 | 0.30 | 49.14 | 80.28 |
Dualex | NBI | 0.72 | 35.06 | 65.43 | 0.67 | 34.63 | 44.69 | 0.53 | 39.32 | 38.80 | 0.57 | 37.34 | 35.46 | 0.59 | 39.32 | 57.96 | |
Chl | 0.50 | 46.95 | 77.54 | 0.52 | 41.78 | 59.44 | 0.24 | 50.07 | 56.16 | 0.53 | 38.86 | 39.77 | 0.38 | 47.87 | 74.69 | ||
Flav | 0.50 | 46.22 | 78.85 | 0.52 | 41.89 | 63.11 | 0.44 | 43.10 | 51.64 | 0.48 | 41.07 | 39.66 | 0.48 | 44.09 | 72.33 | ||
RS | NDRE | 0.87 | 24.09 | 20.56 | 0.75 | 30.26 | 24.00 | 0.76 | 27.96 | 21.18 | 0.64 | 36.39 | 36.21 | 0.68 | 34.72 | 32.53 | |
NDVI | 0.82 | 28.22 | 33.07 | 0.65 | 35.41 | 34.41 | 0.57 | 37.59 | 33.69 | 0.62 | 37.24 | 37.99 | 0.62 | 37.50 | 36.91 |
Index | Cultivar | Jointing Stage | Booting Stage | Flowering Stage | Filling Stage | All Stage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | RE (%) | R2 | RMSE | RE (%) | R2 | RMSE | RE (%) | R2 | RMSE | RE (%) | R2 | RMSE | RE (%) | ||
SPAD | XM30 | 0.81 | 0.22 | 34.38 | 0.70 | 0.22 | 21.74 | 0.64 | 0.24 | 24.47 | 0.76 | 0.20 | 26.01 | 0.73 | 0.21 | 31.36 |
HM20 | 0.31 | 0.48 | 77.65 | 0.41 | 0.32 | 52.62 | 0.58 | 0.28 | 48.29 | 0.48 | 0.28 | 45.56 | 0.48 | 0.33 | 55.81 | |
YM15 | 0.29 | 0.16 | 27.51 | 0.72 | 0.18 | 18.54 | 0.81 | 0.23 | 45.14 | 0.77 | 0.13 | 20.78 | 0.63 | 0.18 | 32.28 | |
YM16 | 0.32 | 0.22 | 52.65 | 0.45 | 0.27 | 63.60 | 0.78 | 0.36 | 62.99 | 0.78 | 0.20 | 29.82 | 0.56 | 0.29 | 59.45 | |
ZM12 | 0.67 | 0.42 | 27.09 | 0.84 | 0.25 | 18.51 | 0.36 | 0.39 | 29.42 | 0.78 | 0.17 | 15.45 | 0.44 | 0.37 | 27.28 | |
YM23 | 0.79 | 0.42 | 29.93 | 0.38 | 0.37 | 29.04 | 0.26 | 0.27 | 26.18 | 0.87 | 0.20 | 17.45 | 0.42 | 0.37 | 27.91 | |
NM13 | 0.50 | 0.28 | 19.65 | 0.68 | 0.24 | 29.45 | 0.56 | 0.28 | 29.08 | 0.78 | 0.14 | 15.67 | 0.41 | 0.28 | 27.95 | |
All varieties | 0.40 | 0.36 | 48.06 | 0.53 | 0.27 | 35.75 | 0.35 | 0.30 | 38.68 | 0.50 | 0.20 | 26.44 | 0.37 | 0.30 | 38.41 | |
NBI | XM30 | 0.83 | 0.18 | 23.04 | 0.87 | 0.15 | 16.68 | 0.75 | 0.18 | 16.74 | 0.77 | 0.15 | 18.94 | 0.73 | 0.19 | 21.56 |
HM20 | 0.85 | 0.13 | 19.35 | 0.64 | 0.18 | 23.03 | 0.78 | 0.15 | 22.58 | 0.78 | 0.13 | 20.76 | 0.74 | 0.15 | 21.90 | |
YM15 | 0.55 | 0.13 | 24.46 | 0.87 | 0.11 | 16.53 | 0.87 | 0.20 | 40.36 | 0.72 | 0.15 | 23.49 | 0.75 | 0.16 | 28.27 | |
YM16 | 0.79 | 0.17 | 36.40 | 0.54 | 0.24 | 48.32 | 0.75 | 0.33 | 52.83 | 0.77 | 0.13 | 18.37 | 0.58 | 0.25 | 43.45 | |
ZM12 | 0.66 | 0.29 | 21.47 | 0.76 | 0.23 | 22.69 | 0.49 | 0.28 | 21.96 | 0.78 | 0.13 | 12.78 | 0.64 | 0.24 | 21.25 | |
YM23 | 0.88 | 0.24 | 20.47 | 0.59 | 0.33 | 25.54 | 0.33 | 0.27 | 24.07 | 0.84 | 0.19 | 16.18 | 0.65 | 0.29 | 23.27 | |
NM13 | 0.53 | 0.28 | 19.33 | 0.76 | 0.19 | 20.40 | 0.58 | 0.26 | 24.52 | 0.78 | 0.13 | 14.19 | 0.56 | 0.24 | 22.46 | |
All varieties | 0.78 | 0.22 | 23.12 | 0.71 | 0.22 | 27.03 | 0.54 | 0.23 | 28.44 | 0.72 | 0.15 | 17.73 | 0.65 | 0.23 | 26.43 | |
NDRE | XM30 | 0.96 | 0.14 | 13.94 | 0.95 | 0.13 | 13.89 | 0.83 | 0.15 | 17.53 | 0.85 | 0.16 | 22.62 | 0.87 | 0.16 | 18.53 |
HM20 | 0.87 | 0.18 | 19.91 | 0.73 | 0.17 | 19.43 | 0.81 | 0.13 | 15.62 | 0.74 | 0.17 | 28.02 | 0.75 | 0.16 | 21.44 | |
YM15 | 0.75 | 0.15 | 22.62 | 0.89 | 0.10 | 10.75 | 0.86 | 0.13 | 21.56 | 0.76 | 0.12 | 15.92 | 0.72 | 0.16 | 24.39 | |
YM16 | 0.83 | 0.15 | 29.27 | 0.97 | 0.09 | 10.04 | 0.83 | 0.14 | 24.69 | 0.96 | 0.07 | 10.18 | 0.85 | 0.12 | 20.12 | |
ZM12 | 0.91 | 0.18 | 15.28 | 0.77 | 0.22 | 20.23 | 0.76 | 0.20 | 16.75 | 0.75 | 0.17 | 15.22 | 0.71 | 0.24 | 20.68 | |
YM23 | 0.93 | 0.19 | 13.72 | 0.74 | 0.24 | 18.44 | 0.84 | 0.12 | 12.19 | 0.83 | 0.21 | 18.15 | 0.67 | 0.26 | 19.93 | |
NM13 | 0.81 | 0.17 | 16.47 | 0.79 | 0.21 | 24.18 | 0.79 | 0.15 | 15.26 | 0.86 | 0.10 | 11.66 | 0.70 | 0.20 | 20.47 | |
All varieties | 0.87 | 0.17 | 18.48 | 0.79 | 0.18 | 18.11 | 0.81 | 0.15 | 17.31 | 0.79 | 0.14 | 16.82 | 0.73 | 0.20 | 20.66 |
Index | Areal Agreement | Kappa Coefficient | ||||||
---|---|---|---|---|---|---|---|---|
Jointing | Booting | Flowering | Filling | Jointing | Booting | Flowering | Filling | |
SPAD | 0.71 | 0.70 | 0.54 | 0.61 | 0.52 | 0.50 | 0.30 | 0.34 |
NBI | 0.84 | 0.77 | 0.66 | 0.71 | 0.72 | 0.61 | 0.42 | 0.49 |
NDRE | 0.86 | 0.84 | 0.80 | 0.72 | 0.75 | 0.69 | 0.65 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Wang, C.; Wang, H.; Fu, Z.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Evaluation of Three Portable Optical Sensors for Non-Destructive Diagnosis of Nitrogen Status in Winter Wheat. Sensors 2021, 21, 5579. https://doi.org/10.3390/s21165579
Jiang J, Wang C, Wang H, Fu Z, Cao Q, Tian Y, Zhu Y, Cao W, Liu X. Evaluation of Three Portable Optical Sensors for Non-Destructive Diagnosis of Nitrogen Status in Winter Wheat. Sensors. 2021; 21(16):5579. https://doi.org/10.3390/s21165579
Chicago/Turabian StyleJiang, Jie, Cuicun Wang, Hui Wang, Zhaopeng Fu, Qiang Cao, Yongchao Tian, Yan Zhu, Weixing Cao, and Xiaojun Liu. 2021. "Evaluation of Three Portable Optical Sensors for Non-Destructive Diagnosis of Nitrogen Status in Winter Wheat" Sensors 21, no. 16: 5579. https://doi.org/10.3390/s21165579