Copper (II) Ion-Modified Gold Nanoclusters as Peroxidase Mimetics for the Colorimetric Detection of Pyrophosphate
"> Figure 1
<p>Interaction between AuNCs, Cu<sup>2+</sup> ions and PPi. (<b>a</b>) Fluorescence emission spectra and photographs of samples under UV light (inset) in different reaction systems. (1) AuNCs, (2) AuNCs and Cu<sup>2+</sup> ions, and (3) AuNCs, Cu<sup>2+</sup> ions, and PPi. (<b>b</b>) UV-vis absorption spectra and photographs of samples under visible light (inset) in different reaction systems. (1) AuNCs, TMB, and H<sub>2</sub>O<sub>2</sub>; (2) AuNCs, Cu<sup>2+</sup> ions, TMB, and H<sub>2</sub>O<sub>2</sub>; (3) AuNCs, Cu<sup>2+</sup> ions, PPi, TMB, and H<sub>2</sub>O<sub>2</sub>. Reaction conditions: (<b>a</b>) AuNCs, 0.25 mg·mL<sup>−1</sup>; Cu<sup>2+</sup>, 10 μM; PPi, 100 μM; and BR buffer (pH 4.0); (<b>b</b>) AuNCs, 0.25 mg·mL<sup>−1</sup>; Cu<sup>2+</sup>, 10 μM; PPi, 10 μM; TMB, 0.1 mg·mL<sup>−1</sup>; H<sub>2</sub>O<sub>2</sub>, 100 μM; and BR buffer (pH 4.0).</p> "> Figure 2
<p>Schematic illustration showing the fluorescence and colorimetric methods of the PPi assay based on AuNCs-Cu<sup>2+</sup>.</p> "> Figure 3
<p>(<b>a</b>) UV-vis spectra of the AuNC-Cu<sup>2+</sup>/TMB/H<sub>2</sub>O<sub>2</sub> system upon the addition of different concentrations of PPi (0–30,000 nM) corresponding to (<b>b</b>) absorbance intensities versus the logarithmic concentrations of PPi. Reaction conditions: AuNCs-Cu<sup>2+</sup>, 0.25 mg·mL<sup>−1</sup>; TMB, 0.1 mg·mL<sup>−1</sup>; H<sub>2</sub>O<sub>2</sub>, 100 μM; and BR buffer (pH 4.0). The error bars represent the standard deviation of three measurements.</p> "> Figure 4
<p>Determination of various interfering ions (20 µM additions).</p> "> Figure 5
<p>Calibration curve between the absorbance at 452 nm against the logarithmic concentration of PPi in artificial urine samples. Reaction conditions: AuNCs-Cu<sup>2+</sup>, 0.25 mg·mL<sup>−1</sup>; TMB, 0.1 mg·mL<sup>−1</sup>; and H<sub>2</sub>O<sub>2</sub>, 100 μM. The error bars represent the standard deviation of three measurements.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of AuNCs-Cu2+
2.3. Colorimetric Assay of PPi
2.4. Fluorescence Assay of PPi
3. Results
3.1. Principle of Detection for PPi
3.2. Quantitative Detection of PPi Based on AuNCs-Cu2
3.3. Feasibility of AuNCs-Cu2+ Probe for PPi Detection in Practical Applications
3.4. Detection of PPi in Urine Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Hong, M.F.; Chu, Z.J.; Xu, H.; Wang, S.P.; Zhao, X.J.; Xiao, S.J. A new copper mediated on-off assay for alkaline phosphatase detection based on MoOx quantum dots. Microchem. J. 2018, 141, 170–175. [Google Scholar] [CrossRef]
- Sandip, B.; Biswa Nath, G.; Varpu, M.K.; Kari, R. Nanomolar pyrophosphate detection in water and in a self-assembled hydrogel of a simple terpyridine-Zn2+ complex. J. Am. Chem. Soc. 2014, 136, 5543–5546. [Google Scholar]
- Qi, F.; Han, Y.; Ye, Z.; Liu, H.; Wei, L.; Xiao, L. Color-coded single-particle pyrophosphate assay with dark-field optical microscopy. Anal. Chem. 2018, 90, 11146–11153. [Google Scholar] [CrossRef]
- Gupta, M.; Bhayana, S.; Sikka, S.K. Role of urinary inhibitors and promoters in calcium oxalate crystallisation. Int. J. Res. Pharm. Chem. 2011, 1, 793–798. [Google Scholar]
- Kiran, S.; Khatik, R.; Schirhagl, R. Smart probe for simultaneous detection of copper ion, pyrophosphate, and alkaline phosphatase in vitro and in clinical samples. Anal. Bioanal. Chem. 2019, 411, 6475–6485. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Dong, P.; Feng, Y.; Xi, X.; Shao, R.; Tian, X.; Zhang, B.; Zhu, M.; Meng, X. A two-photon fluorescent probe for biological Cu (Ⅱ) and PPi detection in aqueous solution and in vivo. Biosens. Bioelectron. 2017, 90, 276–282. [Google Scholar] [CrossRef]
- Shiba, A.; Kinoshita-Kikuta, E.; Kinoshita, E.; Koike, T. TAMRA/TAMRA fluorescence quenching systems for the activity assay of alkaline phosphatase. Sensors 2017, 17, 12. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, J.; Di, H.; Liu, H.; Liu, D. Live-Cell Pyrophosphate Imaging by in Situ Hot-Spot Generation. Anal. Chem. 2017, 89, 3532–3537. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Rao, H.; Xue, X.; An, P.; Gao, M.; Luo, M.; Liu, X.; Xue, Z. Target-mediated surface chemistry of gold nanorods for breaking the low color resolution limitation of monocolorimetric sensor. Anal. Chim. Acta 2020, 1097, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Luo, S.; Xu, D.; Liu, S.; Wu, N.; Yao, W.; Xiaomin, Z.; Linlin, Z.; Xinhua, L. Silica-polydopamine hybrids as light-induced oxidase mimics for colorimetric detection of pyrophosphate. Analyst 2020, 145, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.E.; Gao, X.; Li, G.; Xue, T.; Yang, H.; Xu, H. Facile colorimetric assay of alkaline phosphatase activity using polydiacetylene liposomes with calcium ions and pyrophosphate. Sens. Actuator B Chem. 2019, 289, 85–92. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Li, Z.; Li, Q.; Liu, X.; Cui, H. Cu(II)-regulated on-site assembly of highly chemiluminescent multifunctionalized carbon nanotubes for inorganic pyrophosphatase activity determination. ACS Appl. Mater. Interfaces 2020, 12, 2903–2909. [Google Scholar] [CrossRef]
- Peng, X.; Zheng, J.; Bao, T.; Wen, W.; Zhang, X.; Wang, S. One-pot synthesis of AuNCs-MnO2 nanoflakes with peroxidase-like characteristics for pyrophosphatase detection based on Exonuclease III and Cu2+-DNAzymes dual-amplified strategy. Sens. Actuator B Chem. 2019, 291, 451–457. [Google Scholar] [CrossRef]
- Villamil-Ramos, R.; Gomez-Tagle, P.; Aguilar-Cordero, J.C.; Yatsimirsky, A.K. Spectrophotometric, fluorimetric and electrochemical selective pyrophosphate/ATP sensing based on the dimethyltin(IV)-tiron system. Anal. Chim. Acta 2019, 1057, 51–59. [Google Scholar] [CrossRef]
- Hosseini, M.; Ganjali, M.R.; Tavakoli, M.; Norouzi, P.; Faridbod, F.; Goldooz, H.; Badiei, A. Pyrophosphate selective recognition in aqueous solution based on fluorescence enhancement of a new aluminium complex. J. Fluoresc. 2011, 21, 1509–1513. [Google Scholar] [CrossRef]
- Greenfield, T.J.; Turnbull, M.M.; Zubieta, J.; Doyle, R.P. Synthesis and structural and magnetic characterization of an Iron(III) pyrophosphate complex with 1,10’-phenanthroline. Inorg. Chim. Acta 2019, 498, 4. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Ma, X.; Wen, J.; Geng, Z.; Wang, Z. Real-time fluorescence assays of alkaline phosphatase and ATP sulfurylase activities based on a novel PPi fluorescent probe. Talanta 2015, 137, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.H.; Hussain, S.; Tanwar, A.S.; Layek, S.; Trivedi, V.; Iyer, P.K. An anionic conjugated polymer as a multi-action sensor for the sensitive detection of Cu2+ and PPi, real-time ALP assaying and cell imaging. Analyst 2015, 140, 4388–4392. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Xianyu, Y.L.; Jiang, X.Y. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Accounts Chem. Res. 2017, 50, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Jiang, X.Q.; Wei, H. Phosphate-responsive 2D-metal-organic-framework-nanozymes for colorimetric detection of alkaline phosphatase. J. Mat. Chem. B 2020, 8, 6905–6911. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ling, Y.; Liu, L.; Xu, J.; Li, J.; Fang, Q. Carbon supported PdNi alloy nanoparticles on SiO2 nanocages with enhanced catalytic performance. Inorg. Chem. Front. 2020, 7, 3081–3091. [Google Scholar] [CrossRef]
- Hou, L.; Qin, Y.X.; Li, J.Y.; Qin, S.Y.; Huang, Y.L.; Lin, T.R.; Guo, L.Q.; Ye, F.G.; Zhao, S.L. A ratiometric multicolor fluorescence biosensor for visual detection of alkaline phosphatase activity via a smartphone. Biosens. Bioelectron. 2019, 143, 7. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.D.; Zheng, B.; Song, C.Y.; Lin, Y.; Pang, D.-W.; Tang, H.-W. Metal-enhanced fluorescence of gold nanoclusters as a sensing platform for multi-component detection. Sens. Actuator B Chem. 2019, 282, 650–658. [Google Scholar] [CrossRef]
- Liu, J.M.; Cui, M.L.; Jiang, S.L.; Wang, X.X.; Lin, L.P.; Jiao, L.; Zhang, L.H.; Zheng, Z.Y. BSA-protected gold nanoclusters as fluorescent sensor for selective and sensitive detection of pyrophosphate. Anal. Methods 2013, 5, 3942–3947. [Google Scholar] [CrossRef]
- Ma, S.; Wang, J.; Yang, G.; Yang, J.; Ding, D.; Zhang, M. Copper (II) ions enhance the peroxidase-like activity and stability of keratin-capped gold nanoclusters for the colorimetric detection of glucose. Microchim. Acta 2019, 186, 271. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, S.; Ren, J.; Yang, J.; Yi, Q.; Ding, D.; Min, Z.; Yang, G. Fluorescence enhancement of cysteine-rich protein-templated gold nanoclusters using silver(i) ions and its sensing application for mercury(ii). Sens. Actuator B Chem. 2018, 267, 342–350. [Google Scholar] [CrossRef]
- Nejad, M.A.F.; Bigdeli, A.; Hormozi-Nezhad, M.R. Wide color-varying visualization of sulfide with a dual emissive ratiometric fluorescence assay using carbon dots and gold nanoclusters. Microchem. J. 2020, 157, 104960. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, M.; Du, Y.; Wang, L.; Peng, B. Ratiometric fluorescence detection of Cu2+ based on carbon dots/bovine serum albumin–Au nanoclusters. Luminescence 2018, 33, 1268–1274. [Google Scholar] [CrossRef]
- Yang, J.; Peng, S.; Shi, Y.; Ma, S.; Wang, J. Fast visual evaluation of the catalytic activity of CeO2: Simple colorimetric assay using 3,3’,5,5’-tetramethylbenzidine as indicator. J. Catal. 2020, 7, 3081–3091. [Google Scholar] [CrossRef]
- Song, Y.; Qiao, J.; Liu, W.; Qi, L. Enhancement of gold nanoclusters-based peroxidase nanozymes for detection of tetracycline. Microchem. J. 2020, 157, 104871. [Google Scholar] [CrossRef]
- English, J.B.; Martell, A.E.; Motekaitis, R.J.; Murase, I. Molecular interaction of pyrophosphate with 1, 13-dioxa-4,7,10,16,20,24-hexaazacyclohexacosane (OBISDIPEN) and its mononuclear and dinuclear copper(II) complexes. Inorg. Chim. Acta 1997, 258, 183–192. [Google Scholar] [CrossRef]
- Li, C.; Chen, Y.; Yang, L.; Zhang, C.; Wang, B.; Wang, Y. Tetraphenylethene decorated hyperbranched poly(amido amine)s as metal/organic-solvent-free turn-on AIE probe for specific pyrophosphate detection. Sens. Actuator B Chem. 2019, 291, 25–33. [Google Scholar] [CrossRef]
- Du, J.; Ye, L.; Ding, M.; Chen, Y.; Zhuo, S.; Zhu, C. Label-free fluorescence polarization detection of pyrophosphate based on 0D/1D fast transformation of CdTe nanostructures. Analyst 2014, 139, 3541–3547. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, P.; Liu, Y.Q.; Cai, Z.; Wang, X.Y.; Me, Y.; Ding, X.Y.; Lin, L.; Jiang, H.J.; Zhang, Z.Q.; et al. A colorimetric indicator-displacement assay based on stable Cu2+ selective carbon dots for fluorescence turn-on detection of pyrophosphate anions in urine. Spectrochim. Acta A 2021, 251, 9. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Hu, L.; Li, L.; Wang, K.; Ji, Y.; Zou, H. Electrochemical determination of pyrophosphate at nanomolar levels using a gold electrode covered with a cysteine nanofilm and based on competitive coordination of Cu(II) ion to cysteine and pyrophosphate. Microchim. Acta 2015, 182, 2069–2075. [Google Scholar] [CrossRef]
- Chen, C.Y.; Tan, Y.Z.; Hsieh, P.H.; Wang, C.M.; Shibata, H.; Maejima, K.; Wang, T.Y.; Hiruta, Y.; Citterio, D.; Liao, W.S. Metal-free colorimetric detection of pyrophosphate ions by inhibitive nanozymatic carbon dots. ACS Sens. 2020, 5, 1314–1324. [Google Scholar] [CrossRef]
Method | Probe | Linear Range (μM) | LOD (nM) | Ref. |
---|---|---|---|---|
DFM | AuNPs | 0–0.49 | 1.49 | [3] |
EL | Cu2+/Cys/Au | 0.1–10,000 | 10 | [35] |
FL | Ag@SiO2-AuNCs-Cu2+ | 0.5–60 | 78.7 | [23] |
FL | BSA-AuNCs-Cu2+ | 0.16–78.1 | 83 | [24] |
FL | AuNCs-Cu2+ | 1–300 | 820 | This work |
COL | CDs | 0–100 | 4.29 | [36] |
COL | SiO2-PDA-Cu2+ | 0.1–300 | 60 | [10] |
COL | AuNCs-Cu2+ | 0.05–30 | 0.49 | This work |
Sample | Original Amount (nM) | Added Amount (nM) | Founded Amount (nM) | RSD (%) (n = 3) | Recovery (%) |
---|---|---|---|---|---|
1 | 401.24 | 300 | 703.62 | 0.03 | 100.79 |
2 | 480.03 | 300 | 775.12 | 0.05 | 98.37 |
3 | 540.56 | 300 | 825.40 | 0.06 | 94.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Wang, J.; Mu, K.; Liu, S.; Yang, G.; Zhang, M.; Yang, J. Copper (II) Ion-Modified Gold Nanoclusters as Peroxidase Mimetics for the Colorimetric Detection of Pyrophosphate. Sensors 2021, 21, 5538. https://doi.org/10.3390/s21165538
Shi Y, Wang J, Mu K, Liu S, Yang G, Zhang M, Yang J. Copper (II) Ion-Modified Gold Nanoclusters as Peroxidase Mimetics for the Colorimetric Detection of Pyrophosphate. Sensors. 2021; 21(16):5538. https://doi.org/10.3390/s21165538
Chicago/Turabian StyleShi, Yunjing, Jinjie Wang, Kun Mu, Suqin Liu, Guang Yang, Min Zhang, and Jingxia Yang. 2021. "Copper (II) Ion-Modified Gold Nanoclusters as Peroxidase Mimetics for the Colorimetric Detection of Pyrophosphate" Sensors 21, no. 16: 5538. https://doi.org/10.3390/s21165538
APA StyleShi, Y., Wang, J., Mu, K., Liu, S., Yang, G., Zhang, M., & Yang, J. (2021). Copper (II) Ion-Modified Gold Nanoclusters as Peroxidase Mimetics for the Colorimetric Detection of Pyrophosphate. Sensors, 21(16), 5538. https://doi.org/10.3390/s21165538