A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson’s Disease
<p>An overview of the pipeline used for this study, which included markerless pose estimation, signal estimation, feature extraction and classification.</p> "> Figure 2
<p>The distribution of UPDRS ratings across the five assessment centres. Severity scores were imbalanced, with low scores being more common than high scores, reflecting the distribution of ratings commonly encountered in the clinic [<a href="#B30-sensors-21-05437" class="html-bibr">30</a>]. DCMN: Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London; DRC: Dementia Research Center, Institute of Neurology, University College London; NRC: Neuroscience Research Centre, Molecular and Clinical Sciences Research Institute, St. George’s, University of London; PDMDC: Parkinson’s Disease and Movement Disorders Center, Baylor College of Medicine; TSL: The Starr Lab, University of California San Francisco.</p> "> Figure 3
<p>Methods overview. (<b>A</b>) Body key-points were extracted from each frame using the deep learning library OpenPose [<a href="#B17-sensors-21-05437" class="html-bibr">17</a>]. (<b>B</b>) Signals were created by combining the time-series of various key-points (see <a href="#sec2dot3-sensors-21-05437" class="html-sec">Section 2.3</a> and <a href="#sensors-21-05437-t001" class="html-table">Table 1</a>). (<b>C</b>) Features were extracted from the signals based on two different methods (<a href="#sec2dot5-sensors-21-05437" class="html-sec">Section 2.5</a>): (1) a Bayesian step frequency model integrating information from three signals over time, and (2) summary statistics such as the median amplitude. (<b>D</b>) An ordinal random forest classifier was used to estimate patients’ UPDRS scores (see <a href="#sec2dot6-sensors-21-05437" class="html-sec">Section 2.6</a>).</p> "> Figure 4
<p>Bayesian step frequency estimation. (<b>A</b>) Examples of the prior distribution (left) and a posterior distribution after 129 updates (i.e., after 129 frames or approximately 4.3 s of video); (<b>B</b>) the evolution of the posterior mean and 95% credible interval for the first 129 updates; (<b>C</b>) point estimates of the Bayesian step frequency model’s posterior distributions at the last frame of each video were highly correlated with the true labels (Pearson’s <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.80</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0.001</mn> </mrow> </semantics></math>). The mean squared error between estimated and true step frequency was <math display="inline"><semantics> <mrow> <mn>0.018</mn> <mspace width="3.33333pt"/> <mi>Hz</mi> </mrow> </semantics></math>; (<b>D</b>) the distribution of errors of step frequency point estimates in the last frame of each video. The mean error was <math display="inline"><semantics> <mrow> <mn>0.03</mn> <mspace width="3.33333pt"/> <mi>Hz</mi> </mrow> </semantics></math>, indicating a tendency to under-predict. The null-hypothesis that the population is normally distributed was rejected (Shapiro Wilk’s <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0.001</mn> </mrow> </semantics></math>).</p> "> Figure 5
<p>Distribution of the six features by clinical UPDRS gait (item 3.10) rating. For each of the six features, a one-way ANOVA test found a highly significant (<math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0.001</mn> </mrow> </semantics></math>) difference in means between the clinical UPDRS groups. All features were significantly correlated with total UPDRS part-III scores (see <a href="#sensors-21-05437-t002" class="html-table">Table 2</a> and <a href="#sensors-21-05437-f006" class="html-fig">Figure 6</a>).</p> "> Figure 6
<p>Correlation of feature values with total UPDRS part-III scores. Most features were significantly correlated with total UPDRS part-III scores (<a href="#sensors-21-05437-t002" class="html-table">Table 2</a>). (<b>A</b>) Estimated step frequency (speed) was significantly correlated with total UPDRS part-III scores (Pearson’s <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mo>−</mo> <mn>0.26</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0.001</mn> </mrow> </semantics></math>). (<b>B</b>) Postural control feature values were significantly correlated with total UPDRS part-III scores (Pearson’s <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mo>−</mo> <mn>0.31</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0.001</mn> </mrow> </semantics></math>).</p> "> Figure 7
<p>Distributions showing the change in each feature value related to medication (<math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>126</mn> </mrow> </semantics></math>, in each subplot), with the mean value marked as an orange dashed line. The change is calculated as the feature value during the `on medication’ assessment, of the levodopa challenge, minus the `off medication’ assessment. As the medication generally improves motor function for PD patients, the directions of change make sense intuitively (see also <a href="#sensors-21-05437-f005" class="html-fig">Figure 5</a>). For example, feature values related to speed and arm swing increased after taking medication. For most features, the change in feature value was significant (see <a href="#sensors-21-05437-t003" class="html-table">Table 3</a>).</p> "> Figure 8
<p>Confusion matrix showing the results from the 10-fold cross-validation based on ratings given by the original examiners at the clinical sites where the assessments were performed. Note that 15 videos were later re-rated by a senior neurologist, which changed the ratings of six videos (see <a href="#sensors-21-05437-t005" class="html-table">Table 5</a>).</p> "> Figure 9
<p>Feature importance of the three random forest classifiers contained within the ordinal classifier. The impurity-based (Gini) importance was calculated as the normalized total reduction of the Gini coefficient by the feature. Arm swing features were important to distinguish normal gait from Parkinsonian gait. Roughness of movement features were important to distinguish between different levels of Parkinsonian impairment.</p> "> Figure 10
<p>Examples with complete agreement between clinician and model. At the top, eccentricity tables for patients who were rated as “normal” (<b>left</b>) and “moderately impaired” (<b>right</b>) are shown. At the bottom, the model’s estimates for the two examples are shown. In both cases, the model agreed with the clinician and estimated the correct ratings with high probability.</p> "> Figure 11
<p>Example with a slight disagreement between the clinician’s rating and the model’s estimate. (<b>A</b>) The eccentricity table at the top shows a less clear structure than the example in <a href="#sensors-21-05437-f010" class="html-fig">Figure 10</a>. While speed, arm swing, and postural control are typical of low severity ratings, the roughness of the movement was fairly typical for higher severity ratings. The Clinician gave the patient a rating of 0, while the model estimated a score of 1, although the distribution at the bottom shows that the model’s probability estimate for rating 0 was very close to the probability for rating 1. (<b>B</b>) The three figures illustrate how the model arrived at its estimates. We computed SHAP values for the example based on each of the three different binary classifiers which are part of the ordinal model. It can be seen that, in all three classifiers, all feature values “push” towards lower ratings, except the two feature values that are related to the roughness of movement. The first classifier estimated the probability of the example receiving a rating of greater than 0 as 59%. The second classifier estimated the probability of the example receiving a rating of 2 or 3 as 18%. For both of the first two classifiers, the specific value for the “arm swing (velocity)” feature was most important.</p> ">
Abstract
:1. Introduction
1.1. Parkinsonian Gait
1.2. Technology
1.3. Previous Work
1.4. Our Approach
2. Materials and Methods
2.1. Proposed Methodology
2.2. Data
2.3. Signals
2.4. Step Frequency (Speed)
2.5. Features
2.6. Classification
2.7. Explainability and Interpretability
3. Results
3.1. Objective Feature Values
3.2. Model Comparison
3.3. Model Performance
3.4. Interpretability of the Model Features
3.5. Interpretability of Model Estimates
3.6. UPDRS Score Re-Ratings
4. Discussion
4.1. Overview of Results
4.2. Comparison with Previous Work
4.3. Interpretability of Results
4.4. Limitations
5. Conclusions
5.1. Future Work
5.2. Contributions
5.3. Practical Application
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soh, S.E.; Morris, M.E.; McGinley, J.L. Determinants of health-related quality of life in Parkinson’s disease: A systematic review. Park. Relat. Disord. 2011, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.A.; Corona, F.; Pilloni, G.; Porta, M.; Fastame, M.C.; Hitchcott, P.K.; Penna, M.P.; Pau, M.; Côté, J.N. Sex-dependent and sex-independent muscle activation patterns in adult gait as a function of age. Exp. Gerontol. 2018, 110, 1–8. [Google Scholar] [CrossRef]
- Elbaz, A.; Artaud, F.; Dugravot, A.; Tzourio, C.; Singh-Manoux, A. The gait speed advantage of taller stature is lost with age. Sci. Rep. 2018, 8, 1485. [Google Scholar] [CrossRef] [Green Version]
- Lyytinen, T.; Bragge, T.; Liikavainio, T.; Vartiainen, P.; Karjalainen, P.A.; Arokoski, J.P. The impact of obesity and weight loss on gait in adults. In The Mechanobiology of Obesity and Related Diseases; Springer: Cham, Switzerland, 2014; pp. 125–147. [Google Scholar]
- Montepare, J.M.; Goldstein, S.B.; Clausen, A. The identification of emotions from gait information. J. Nonverbal Behav. 1987, 11, 33–42. [Google Scholar] [CrossRef]
- Moon, Y.; Sung, J.; An, R.; Hernandez, M.E.; Sosnoff, J.J. Gait variability in people with neurological disorders: A systematic review and meta-analysis. Hum. Mov. Sci. 2016, 47, 197–208. [Google Scholar] [CrossRef]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef]
- di Biase, L.; Di Santo, A.; Caminiti, M.L.; De Liso, A.; Shah, S.A.; Ricci, L.; Di Lazzaro, V. Gait analysis in Parkinson’s disease: An overview of the most accurate markers for diagnosis and symptoms monitoring. Sensors 2020, 20, 3529. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Stebbins, G.T.; Chmura, T.A.; Fahn, S.; Poewe, W.; Tanner, C.M. Teaching program for the movement disorder society-sponsored revision of the Unified Parkinson’s Disease Rating Scale:(MDS-UPDRS). Mov. Disord. 2010, 25, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- LeMoyne, R. Wearable and wireless accelerometer systems for monitoring Parkinson’s disease patients—A perspective review. Adv. Park. Dis. 2013, 2013, 39071. [Google Scholar] [CrossRef] [Green Version]
- Ossig, C.; Antonini, A.; Buhmann, C.; Classen, J.; Csoti, I.; Falkenburger, B.; Schwarz, M.; Winkler, J.; Storch, A. Wearable sensor-based objective assessment of motor symptoms in Parkinson’s disease. J. Neural Transm. 2016, 123, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Muro-De-La-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [Green Version]
- Takeda, R.; Tadano, S.; Todoh, M.; Morikawa, M.; Nakayasu, M.; Yoshinari, S. Gait analysis using gravitational acceleration measured by wearable sensors. J. Biomech. 2009, 42, 223–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitoma, H.; Yoneyama, M.; Orimo, S. 24-hour recording of parkinsonian gait using a portable gait rhythmogram. Intern. Med. 2010, 49, 2401–2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, S.J.; Paradiso, J.A. Shoe-integrated sensor system for wireless gait analysis and real-time feedback. In Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society][Engineering in Medicine and Biology, Houston, TX, USA, 23–26 October 2002; Volume 3, pp. 2468–2469. [Google Scholar]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime multi-person 2D pose estimation using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 172–186. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5693–5703. [Google Scholar]
- Fang, H.S.; Xie, S.; Tai, Y.W.; Lu, C. Rmpe: Regional multi-person pose estimation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2334–2343. [Google Scholar]
- Chen, Y.; Wang, Z.; Peng, Y.; Zhang, Z.; Yu, G.; Sun, J. Cascaded pyramid network for multi-person pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7103–7112. [Google Scholar]
- Zheng, C.; Wu, W.; Yang, T.; Zhu, S.; Chen, C.; Liu, R.; Shen, J.; Kehtarnavaz, N.; Shah, M. Deep Learning-Based Human Pose Estimation: A Survey. arXiv 2020, arXiv:cs.CV/2012.13392. [Google Scholar]
- Michelini, A.; Eshraghi, A.; Andrysek, J. Two-dimensional video gait analysis: A systematic review of reliability, validity, and best practice considerations. Prosthetics Orthot. Int. 2020, 44, 245–262. [Google Scholar] [CrossRef]
- Stenum, J.; Rossi, C.; Roemmich, R.T. Two-dimensional video-based analysis of human gait using pose estimation. PLoS Comput. Biol. 2021, 17, e1008935. [Google Scholar] [CrossRef]
- Sabo, A.; Mehdizadeh, S.; Ng, K.D.; Iaboni, A.; Taati, B. Assessment of Parkinsonian gait in older adults with dementia via human pose tracking in video data. J. Neuroeng. Rehabil. 2020, 17, 1–10. [Google Scholar] [CrossRef]
- Lu, M.; Poston, K.; Pfefferbaum, A.; Sullivan, E.V.; Li, F.-F.; Pohl, K.M.; Niebles, J.C.; Adeli, E. Vision-based Estimation of MDS-UPDRS Gait Scores for Assessing Parkinson’s Disease Motor Severity. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 4–8 October 2020; Springer: Cham, Switzerland, 2020; pp. 637–647. [Google Scholar]
- Ye, M.; Yang, C.; Stankovic, V.; Stankovic, L.; Cheng, S. Distinct feature extraction for video-based gait phase classification. IEEE Trans. Multimed. 2019, 22, 1113–1125. [Google Scholar] [CrossRef] [Green Version]
- Valencia-Marin, C.K.; Pulgarin-Giraldo, J.D.; Velasquez-Martinez, L.F.; Alvarez-Meza, A.M.; Castellanos-Dominguez, G. An Enhanced Joint Hilbert Embedding-Based Metric to Support Mocap Data Classification with Preserved Interpretability. Sensors 2021, 21, 4443. [Google Scholar] [CrossRef]
- Dindorf, C.; Teufl, W.; Taetz, B.; Bleser, G.; Fröhlich, M. Interpretability of input representations for gait classification in patients after total hip arthroplasty. Sensors 2020, 20, 4385. [Google Scholar] [CrossRef] [PubMed]
- Machine Medicine Technologies Limited. The Company’s Webplatform. 2021. Available online: https://kelvin.machinemedicine.com/ (accessed on 16 July 2021).
- Keezer, M.R.; Wolfson, C.; Postuma, R.B. Age, gender, comorbidity, and the MDS-UPDRS: Results from a population-based study. Neuroepidemiology 2016, 46, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Meyns, P.; Bruijn, S.M.; Duysens, J. The how and why of arm swing during human walking. Gait Posture 2013, 38, 555–562. [Google Scholar] [CrossRef]
- Huang, X.; Mahoney, J.M.; Lewis, M.M.; Du, G.; Piazza, S.J.; Cusumano, J.P. Both coordination and symmetry of arm swing are reduced in Parkinson’s disease. Gait Posture 2012, 35, 373–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewek, M.D.; Poole, R.; Johnson, J.; Halawa, O.; Huang, X. Arm swing magnitude and asymmetry during gait in the early stages of Parkinson’s disease. Gait Posture 2010, 31, 256–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirelman, A.; Bernad-Elazari, H.; Thaler, A.; Giladi-Yacobi, E.; Gurevich, T.; Gana-Weisz, M.; Saunders-Pullman, R.; Raymond, D.; Doan, N.; Bressman, S.B.; et al. Arm swing as a potential new prodromal marker of Parkinson’s disease. Mov. Disord. 2016, 31, 1527–1534. [Google Scholar] [CrossRef]
- Han, J.; Jeon, H.S.; Jeon, B.S.; Park, K.S. Gait detection from three-dimensional acceleration signals of ankles for the patients with Parkinson’s disease. In Proceedings of the IEEE The International Special Topic Conference on Information Technology in Biomedicine, Ioannina, Greece, 26–28 October 2006; Volume 2628. [Google Scholar]
- San-Segundo, R.; Navarro-Hellín, H.; Torres-Sánchez, R.; Hodgins, J.; De la Torre, F. Increasing robustness in the detection of freezing of gait in Parkinson’s disease. Electronics 2019, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Beck, Y.; Herman, T.; Brozgol, M.; Giladi, N.; Mirelman, A.; Hausdorff, J.M. SPARC: A new approach to quantifying gait smoothness in patients with Parkinson’s disease. J. Neuroeng. Rehabil. 2018, 15, 1–9. [Google Scholar] [CrossRef]
- Lord, S.; Galna, B.; Verghese, J.; Coleman, S.; Burn, D.; Rochester, L. Independent domains of gait in older adults and associated motor and nonmotor attributes: Validation of a factor analysis approach. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2013, 68, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Galna, B.; Lord, S.; Burn, D.J.; Rochester, L. Progression of gait dysfunction in incident Parkinson’s disease: Impact of medication and phenotype. Mov. Disord. 2015, 30, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.Z.U.; Del Din, S.; Guan, Y.; Yarnall, A.J.; Shi, J.Q.; Rochester, L. Selecting clinically relevant gait characteristics for classification of early parkinson’s disease: A comprehensive machine learning approach. Sci. Rep. 2019, 9, 17269. [Google Scholar] [CrossRef] [Green Version]
- Frank, E.; Hall, M. A simple approach to ordinal classification. In Proceedings of the European Conference on Machine Learning, Freiburg, Germany, 3–5 September 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 145–156. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4 December 2017; pp. 4768–4777. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Good, P.I. Permutation, Parametric, and Bootstrap Tests of Hypotheses; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Gini, C. On the measure of concentration with special reference to income and statistics. Colo. Coll. Publ. Gen. Ser. 1936, 208, 73–79. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Rastegari, E.; Marmelat, V.; Najjar, L.; Bastola, D.; Ali, H.H. Using gait parameters to recognize various stages of Parkinson’s disease. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 1647–1651. [Google Scholar]
- Hatanaka, N.; Sato, K.; Hishikawa, N.; Takemoto, M.; Ohta, Y.; Yamashita, T.; Abe, K. Comparative gait analysis in progressive supranuclear palsy and Parkinson’s disease. Eur. Neurol. 2016, 75, 282–289. [Google Scholar] [CrossRef]
- Weiss, A.; Sharifi, S.; Plotnik, M.; van Vugt, J.P.; Giladi, N.; Hausdorff, J.M. Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabilit. Neural Repair 2011, 25, 810–818. [Google Scholar] [CrossRef]
- Seedat, N.; Aharonson, V. Machine learning discrimination of Parkinson’s Disease stages from walker-mounted sensors data. In Explainable AI in Healthcare and Medicine; Springer: Cham, Switzerland, 2021; pp. 37–44. [Google Scholar]
- Yogev, G.; Plotnik, M.; Peretz, C.; Giladi, N.; Hausdorff, J.M. Gait asymmetry in patients with Parkinson’s disease and elderly fallers: When does the bilateral coordination of gait require attention? Exp. Brain Res. 2007, 177, 336–346. [Google Scholar] [CrossRef]
- Abdulhay, E.; Arunkumar, N.; Narasimhan, K.; Vellaiappan, E.; Venkatraman, V. Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease. Future Gener. Comput. Syst. 2018, 83, 366–373. [Google Scholar] [CrossRef]
- Zhao, A.; Qi, L.; Li, J.; Dong, J.; Yu, H. A hybrid spatio-temporal model for detection and severity rating of Parkinson’s disease from gait data. Neurocomputing 2018, 315, 1–8. [Google Scholar] [CrossRef] [Green Version]
- El Maachi, I.; Bilodeau, G.A.; Bouachir, W. Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Syst. Appl. 2020, 143, 113075. [Google Scholar] [CrossRef]
- Caramia, C.; Torricelli, D.; Schmid, M.; Munoz-Gonzalez, A.; Gonzalez-Vargas, J.; Grandas, F.; Pons, J.L. IMU-based classification of Parkinson’s disease from gait: A sensitivity analysis on sensor location and feature selection. IEEE J. Biomed. Health Inform. 2018, 22, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.; Rochester, L.; Baker, K.; Nieuwboer, A. Concurrent validity of accelerometry to measure gait in Parkinsons Disease. Gait Posture 2008, 27, 357–359. [Google Scholar] [CrossRef]
- Crenna, P.; Carpinella, I.; Rabuffetti, M.; Calabrese, E.; Mazzoleni, P.; Nemni, R.; Ferrarin, M. The association between impaired turning and normal straight walking in Parkinson’s disease. Gait Posture 2007, 26, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Mariani, B.; Jiménez, M.C.; Vingerhoets, F.J.; Aminian, K. On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease. IEEE Trans. Biomed. Eng. 2012, 60, 155–158. [Google Scholar] [CrossRef]
- Morris, M.E.; Huxham, F.; McGinley, J.; Dodd, K.; Iansek, R. The biomechanics and motor control of gait in Parkinson disease. Clin. Biomech. 2001, 16, 459–470. [Google Scholar] [CrossRef]
- Apte, S.; Plooij, M.; Vallery, H. Influence of body weight unloading on human gait characteristics: A systematic review. J. Neuroeng. Rehabil. 2018, 15, 1–18. [Google Scholar]
- Bogo, F.; Kanazawa, A.; Lassner, C.; Gehler, P.; Romero, J.; Black, M.J. Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 561–578. [Google Scholar]
- Chen, C.H.; Ramanan, D. 3d human pose estimation = 2d pose estimation + matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7035–7043. [Google Scholar]
- Dabral, R.; Gundavarapu, N.B.; Mitra, R.; Sharma, A.; Ramakrishnan, G.; Jain, A. Multi-person 3D human pose estimation from monocular images. In Proceedings of the 2019 International Conference on 3D Vision (3DV), Quebec City, QC, Canada, 16–19 September 2019; pp. 405–414. [Google Scholar]
- Habibie, I.; Xu, W.; Mehta, D.; Pons-Moll, G.; Theobalt, C. In the wild human pose estimation using explicit 2d features and intermediate 3d representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10905–10914. [Google Scholar]
- Chen, S.; Lach, J.; Lo, B.; Yang, G.Z. Toward pervasive gait analysis with wearable sensors: A systematic review. IEEE J. Biomed. Health Inform. 2016, 20, 1521–1537. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Nyström, C.D.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sport. Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef] [PubMed]
Signal | Description | Formula |
---|---|---|
Feature | Pearson’s r | p-Value |
---|---|---|
Speed | <0.001 | |
Arm swing (velocity) | <0.001 | |
Arm swing (amplitude) | <0.001 | |
Postural control | <0.001 | |
Roughness (min) | <0.001 | |
Roughness (max) | <0.001 |
Feature | Mann–Whitney’s U | p-Value | P (Diff > 0) | p-Value |
---|---|---|---|---|
Speed | 6144 | 0.64 | ||
Arm swing (velocity) | 4776 | <0.001 | 0.75 | <0.001 |
Arm swing (amplitude) | 4965 | <0.001 | 0.77 | <0.001 |
Postural control | 6908 | 0.58 | ||
Roughness (min) | 6303 | 0.35 | <0.001 | |
Roughness (max) | 6658 | 0.33 | <0.001 |
Accuracy | Balanced Accuracy | Accuracy () | Spearman’s | |
---|---|---|---|---|
RFC | 0.50 | 0.50 | 0.95 | 0.52 |
LDA | 0.48 | 0.51 | 0.93 | 0.47 |
LOGIS | 0.45 | 0.50 | 0.92 | 0.47 |
ANN | 0.46 | 0.41 | 0.92 | 0.32 |
SVM | 0.46 | 0.52 | 0.93 | 0.49 |
XGBoost | 0.47 | 0.49 | 0.93 | 0.50 |
Residuals = 2 | Residuals = 1 | Residuals = 0 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Original Clinical UPDRS | 2 | 1 | 2 | 0 | 2 | 1 | 2 | 2 | 0 | 2 | 0 | 3 | 1 | 2 | 1 |
Re-rated Clinical UPDRS | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 0 | 2 | 0 | 3 | 1 | 1 | 0 |
Model Estimated UPDRS | 0 | 3 | 0 | 2 | 0 | 2 | 1 | 1 | 1 | 2 | 0 | 3 | 1 | 2 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupprechter, S.; Morinan, G.; Peng, Y.; Foltynie, T.; Sibley, K.; Weil, R.S.; Leyland, L.-A.; Baig, F.; Morgante, F.; Gilron, R.; et al. A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson’s Disease. Sensors 2021, 21, 5437. https://doi.org/10.3390/s21165437
Rupprechter S, Morinan G, Peng Y, Foltynie T, Sibley K, Weil RS, Leyland L-A, Baig F, Morgante F, Gilron R, et al. A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson’s Disease. Sensors. 2021; 21(16):5437. https://doi.org/10.3390/s21165437
Chicago/Turabian StyleRupprechter, Samuel, Gareth Morinan, Yuwei Peng, Thomas Foltynie, Krista Sibley, Rimona S. Weil, Louise-Ann Leyland, Fahd Baig, Francesca Morgante, Ro’ee Gilron, and et al. 2021. "A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson’s Disease" Sensors 21, no. 16: 5437. https://doi.org/10.3390/s21165437
APA StyleRupprechter, S., Morinan, G., Peng, Y., Foltynie, T., Sibley, K., Weil, R. S., Leyland, L. -A., Baig, F., Morgante, F., Gilron, R., Wilt, R., Starr, P., Hauser, R. A., & O’Keeffe, J. (2021). A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson’s Disease. Sensors, 21(16), 5437. https://doi.org/10.3390/s21165437