The Information Geometry of Sensor Configuration
<p>Diagrammatic representation of the sensor model; sensors are at <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>i</mi> </msub> <mo>∈</mo> <mi>M</mi> </mrow> </semantics></math> taking measurements of a target at <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">θ</mi> <mo>∈</mo> <mi>M</mi> </mrow> </semantics></math>. A measure of distance between different sensor configurations, physically corresponding to change in information content is obtained through a suitable restriction of the metric <math display="inline"><semantics> <msub> <mi>G</mi> <mi>g</mi> </msub> </semantics></math> (<a href="#FD13-sensors-21-05265" class="html-disp-formula">13</a>) to the configuration manifold <math display="inline"><semantics> <mrow> <mi mathvariant="script">M</mi> <mo>(</mo> <mo>Γ</mo> <mo>)</mo> <mo>⊂</mo> <mi mathvariant="script">M</mi> </mrow> </semantics></math>, the space of all Riemannian metric on <span class="html-italic">M</span>. <math display="inline"><semantics> <mi mathvariant="script">M</mi> </semantics></math> is almost certainly not topologically spherical, it is merely drawn here as such for simplicity.</p> "> Figure 2
<p>Graphical illustration of D-optimal sensor dynamics; a sensor configuration <math display="inline"><semantics> <msub> <mo>Γ</mo> <mn>0</mn> </msub> </semantics></math> evolves to a new configuration <math display="inline"><semantics> <msub> <mo>Γ</mo> <mn>1</mn> </msub> </semantics></math> by moving the <span class="html-italic">N</span> sensors in <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>-space to new positions that are determined by maximizing the determinant of the metric <span class="html-italic">G</span>, given by Equation (<a href="#FD14-sensors-21-05265" class="html-disp-formula">14</a>), on the sensor manifold <math display="inline"><semantics> <mrow> <mi mathvariant="script">M</mi> <mo>(</mo> <mo>Γ</mo> <mo>)</mo> </mrow> </semantics></math>. Each sensor <math display="inline"><semantics> <msup> <mi>λ</mi> <mi>i</mi> </msup> </semantics></math> traverses a path <math display="inline"><semantics> <msub> <mi>γ</mi> <mi>i</mi> </msub> </semantics></math> through <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>-space to end up in the appropriate positions constituting <math display="inline"><semantics> <msub> <mo>Γ</mo> <mn>1</mn> </msub> </semantics></math>. As shown in <a href="#sec4dot3-sensors-21-05265" class="html-sec">Section 4.3</a>, the paths <math display="inline"><semantics> <msub> <mi>γ</mi> <mi>i</mi> </msub> </semantics></math> are entropy minimizing if they are geodesic on the sensor manifold <math display="inline"><semantics> <mrow> <mi mathvariant="script">M</mi> <mo>(</mo> <mo>Γ</mo> <mo>)</mo> </mrow> </semantics></math>. Note that the target is shown as stationary in this particular illustration.</p> "> Figure 3
<p>Solutions to the geodesic equation on <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> <mo>×</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> </mrow> </semantics></math> for a target starting at <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>3</mn> <mo>)</mo> </mrow> </semantics></math> and sensors at <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>7</mn> <mo>,</mo> <mo>−</mo> <mn>6</mn> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> (raised at a height 1 above <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>). The differing paths correspond to the initial direction vector <math display="inline"><semantics> <mrow> <mo>(</mo> <mo form="prefix">cos</mo> <mi>θ</mi> <mo>,</mo> <mo form="prefix">sin</mo> <mi>θ</mi> <mo>)</mo> </mrow> </semantics></math> of the target, varying as <math display="inline"><semantics> <mi>θ</mi> </semantics></math> varies from 0 to <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </semantics></math> radians in steps of 0.25 radians.</p> "> Figure 4
<p>Geodesic distance on <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> <mo>×</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> </mrow> </semantics></math> from the point <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>3</mn> <mo>)</mo> </mrow> </semantics></math> with sensors at <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>7</mn> <mo>,</mo> <mo>−</mo> <mn>6</mn> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> (raised at a height 1 above <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>). The distance was calculated using a Fast Marching formulation of the geodesic equation. The fact that the geodesics follow the gradient of this distance allows comparison with <a href="#sensors-21-05265-f003" class="html-fig">Figure 3</a>.</p> "> Figure 5
<p>Geodesic speed for each point in <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> <mo>×</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> </mrow> </semantics></math> for targets departing each point in direction of the vector (1,−1).</p> "> Figure 6
<p>Contour plot of <math display="inline"><semantics> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mo>(</mo> <mi mathvariant="bold-italic">G</mi> <mo>)</mo> </mrow> </semantics></math>, for <math display="inline"><semantics> <mi mathvariant="bold-italic">G</mi> </semantics></math> given by (<a href="#FD14-sensors-21-05265" class="html-disp-formula">14</a>), for the case of three sensors, where <math display="inline"><semantics> <msup> <mi>S</mi> <mn>1</mn> </msup> </semantics></math> is fixed at <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo>−</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <msup> <mi>S</mi> <mn>2</mn> </msup> </semantics></math> at <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics></math> (red dot). Brighter shades indicate a greater value of <math display="inline"><semantics> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mo>(</mo> <mi mathvariant="bold-italic">G</mi> <mo>)</mo> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mo>(</mo> <mi mathvariant="bold-italic">G</mi> <mo>)</mo> </mrow> </semantics></math> is maximum at <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>5.5</mn> <mo>)</mo> </mrow> </semantics></math>. The third sensor is allowed to move. The geodesic path linking the initial and final positions of <math display="inline"><semantics> <msup> <mi>S</mi> <mn>3</mn> </msup> </semantics></math> starting at <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>6</mn> <mo>,</mo> <mo>−</mo> <mn>6</mn> <mo>)</mo> </mrow> </semantics></math> (yellow dot) is shown by the dashed yellow curve, while the dashed red curve shows another geodesic path linking <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>6</mn> <mo>,</mo> <mo>−</mo> <mn>7</mn> <mo>)</mo> </mrow> </semantics></math> (red dot) to the D-optimal location <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>1</mn> <mo>,</mo> <mo>−</mo> <mn>5.5</mn> <mo>)</mo> </mrow> </semantics></math>. The actual positions of the sensors are raised above <math display="inline"><semantics> <mo>Ω</mo> </semantics></math> by a distance <math display="inline"><semantics> <msub> <mi>z</mi> <mi>i</mi> </msub> </semantics></math>.</p> "> Figure 7
<p>Solutions to the geodesic equation on <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> <mo>×</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> </mrow> </semantics></math> for a sensor starting at <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with the other sensors stationary at <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo>−</mo> <mn>3</mn> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics></math> (raised at a height 1 above <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>.). The target is located at <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> on <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>. The differing paths correspond to the initial direction vector <math display="inline"><semantics> <mrow> <mo>(</mo> <mo form="prefix">cos</mo> <mi>ϕ</mi> <mo>,</mo> <mo form="prefix">sin</mo> <mi>ϕ</mi> <mo>)</mo> </mrow> </semantics></math> of the target, varying as <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> varies from 0 to <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </semantics></math> radians in steps of 0.25 radians.</p> "> Figure 8
<p>Geodesic distance on <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> <mo>×</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> </mrow> </semantics></math> for a sensor starting at <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> with the other sensor stationary at <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>7</mn> <mo>,</mo> <mo>−</mo> <mn>6</mn> <mo>)</mo> </mrow> </semantics></math> (raised at a height 1 above <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>) and the using an uninformative prior for the target. The distance was calculated using a Fast Marching formulation of the geodesic equation. The fact that the geodesics follow the gradient of this distrance allows comparison with <a href="#sensors-21-05265-f007" class="html-fig">Figure 7</a>.</p> "> Figure 9
<p>Geodesic speed sensor moving along a geodesic in direction (1, −1) at each point in <math display="inline"><semantics> <mrow> <mo>Ω</mo> <mo>=</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> <mo>×</mo> <mo>[</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>]</mo> </mrow> </semantics></math>. The other sensor is stationary at <math display="inline"><semantics> <mrow> <mo>(</mo> <mo>−</mo> <mn>7</mn> <mo>,</mo> <mo>−</mo> <mn>6</mn> <mo>)</mo> </mrow> </semantics></math>, and an uninformative prior is used for the target. The actual positions of the sensor are raised above <math display="inline"><semantics> <mo>Ω</mo> </semantics></math> by a distance 1.</p> ">
Abstract
:1. Introduction
2. Divergences and Metrics
3. The Information in Sensor Measurements
3.1. D-Optimality
3.2. Geodesics on the Sensor Manifold
3.3. Kinematic Conditions on Information Management
4. The Information of Sensor Configurations
4.1. The Manifold of Riemannian Metrics
4.2. D-Optimal Configurations
4.3. Geodesics for the Configuration Manifold
5. Configuration for Bearings-Only Sensors
5.1. Target Geodesics
5.2. Configuration Metric Calculations
5.3. Visualizing Configuration Geodesics
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. Proof of Theorem
Appendix A.1. Mise en Scène
Appendix A.2. The Information Metric
Appendix A.3. Length Metrics
Appendix A.4. Extremal Property of the Information Metric
References
- Bell, M.R. Information theory and radar waveform design. IEEE Trans. Inf. Theory 1993, 39, 1578–1597. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Sowelam, S.M.; Tewfik, A.H. Waveform selection in radar target classification. IEEE Trans. Inf. Theory 2000, 46, 1014–1029. [Google Scholar] [CrossRef]
- Kershaw, D.J.; Evans, R.J. Optimal waveform selection for tracking systems. IEEE Trans. Inf. Theory 1994, 40, 1536–1550. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Rao, C.R. Information and accuracy attainable in estimation of statistical parameters. Bull. Calcutta Math. Soc. 1945, 37, 81–91. [Google Scholar]
- Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. Ser. A 1946, 186, 453–461. [Google Scholar]
- Amari, S. Information geometry on hierarchy of probability distributions. IEEE Trans. Inf. Theory 2001, 47, 1701–1711. [Google Scholar] [CrossRef] [Green Version]
- Amari, S.I.; Nagaoka, H. Methods of Information Geometry; American Mathematical Soc.: Providence, RI, USA, 2007; Volume 191. [Google Scholar]
- Amari, S.I. Information geometry. Jpn. J. Math. 2021, 16, 1–48. [Google Scholar] [CrossRef]
- Nielsen, F. (Ed.) Progress in Information Geometry: Theory and Applications; Springer International Publishing: New York, NY, USA, 2021. [Google Scholar]
- Moran, B.; Howard, S.; Cochran, D. An information-geometric approach to sensor management. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 5261–5264. [Google Scholar]
- Moran, W.; Howard, S.D.; Cochran, D.; Suvorova, S. Sensor management via Riemannian geometry. In Proceedings of the 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 1–5 October 2012; pp. 358–362. [Google Scholar]
- Mentre, F.; Mallet, A.; Baccar, D. Optimal design in random-effects regression models. Biometrika 1997, 84, 429–442. [Google Scholar] [CrossRef]
- Amari, S.I.; Cichocki, A.; Yang, H.H. A new learning algorithm for blind signal separation. In Advances in Neural Information Processing Systems; Morgan Kaufmann Publishers: Burlington, MA, USA, 1996; pp. 757–763. [Google Scholar]
- Vallisneri, M. Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects. Phys. Rev. D 2008, 77, 042001-1–042001-20. [Google Scholar] [CrossRef] [Green Version]
- Carter, K.M.; Raich, R.; Finn, W.G.; Hero, A.O., III. Information-geometric dimensionality reduction. IEEE Signal Process. Mag. 2011, 28, 89. [Google Scholar] [CrossRef] [Green Version]
- Peter, A.; Rangarajan, A. Shape analysis using the Fisher-Rao Riemannian metric: Unifying shape representation and deformation. In Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, Arlington, VA, USA, 6–9 April 2006; pp. 1164–1167. [Google Scholar]
- Montúfar, G.; Rauh, J.; Ay, N. On the Fisher metric of conditional probability polytopes. Entropy 2014, 16, 3207–3233. [Google Scholar] [CrossRef] [Green Version]
- Beldjoudi, G.; Rebuffel, V.; Verger, L.; Kaftandjian, V.; Rinkel, J. An optimised method for material identification using a photon counting detector. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2012, 663, 26–36. [Google Scholar] [CrossRef]
- Suvorova, S.; Moran, B.; Howard, S.D.; Cochran, D. Control of sensing by navigation on information gradients. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Austin, TX, USA, 3–5 December 2013; pp. 197–200. [Google Scholar]
- Cochran, D.; Hero, A.O. Information-driven sensor planning: Navigating a statistical manifold. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Austin, TX, USA, 3–5 December 2013; pp. 1049–1052. [Google Scholar]
- Gil-Medrano, O.; Michor, P.W. The Riemannian manifold of all Riemannian metrics. Q. J. Math. 1991, 42, 183–202. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum theory of gravity. I. The canonical theory. Phys. Rev. 1967, 160, 1113. [Google Scholar] [CrossRef] [Green Version]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Endres, D.; Schindelin, J. A New Metric for Probability Distributions. IEEE Trans. Inf. Theory 2002, 49, 1858–1860. [Google Scholar] [CrossRef] [Green Version]
- Jazwinski, A. Stochastic Processes and Filtering Theory; Number 64 in Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Steinberg, D.M.; Hunter, W.G. Experimental design: Review and comment. Technometrics 1984, 26, 71–97. [Google Scholar] [CrossRef]
- Walter, É.; Pronzato, L. Qualitative and quantitative experiment design for phenomenological models¡ªa survey. Automatica 1990, 26, 195–213. [Google Scholar] [CrossRef]
- Sebastiani, P.; Wynn, H.P. Bayesian experimental design and Shannon information. Proc. Sect. Bayesian Stat. Sci. 1997, 44, 176–181. [Google Scholar]
- Ford, I.; Titterington, D.; Kitsos, C.P. Recent advances in nonlinear experimental design. Technometrics 1989, 31, 49–60. [Google Scholar] [CrossRef]
- Carmo, M.P.D. Riemannian Geometry; Birkhäuser: Basel, Switzerland, 1992. [Google Scholar]
- Clarke, B. The Completion of the Manifold of Riemannian Metrics with Respect to its L2 Metric. arXiv 2009, arXiv:0904.0159. [Google Scholar]
- Forbes, C.; Evans, M.; Hastings, N.; Peacock, B. Statistical Distributions; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Sethian, J.A. A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 1996, 93, 1591–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethian, J.A. Fast marching methods. SIAM Rev. 1999, 41, 199–235. [Google Scholar] [CrossRef]
- Tsitsiklis, J.N. Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 1995, 40, 1528–1538. [Google Scholar] [CrossRef] [Green Version]
- Sethian, J.A.; Vladimirsky, A. Ordered upwind methods for static Hamilton—Jacobi equations: Theory and algorithms. SIAM J. Numer. Anal. 2003, 41, 325–363. [Google Scholar] [CrossRef]
- Kimmel, R.; Sethian, J.A. Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 1998, 95, 8431–8435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyré, G.; Péchaud, M.; Keriven, R.; Cohen, L.D. Geodesic methods in computer vision and graphics. Found. Trends Comput. Graph. Vis. 2010, 5, 197–397. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, I.; Luenberger, D. Differential games with imperfect state information. IEEE Trans. Autom. Control 1969, 14, 29–38. [Google Scholar] [CrossRef]
- Hamadene, S.; Lepeltier, J.P. Zero-sum stochastic differential games and backward equations. Syst. Control Lett. 1995, 24, 259–263. [Google Scholar] [CrossRef]
- Keller, M. Intrinsic Metrics on Graphs: A Survey. In Mathematical Technology of Networks; Mugnolo, D., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 81–119. [Google Scholar]
- Bobenko, A.I.; Sullivan, J.M.; Schröder, P.; Ziegler, G.M. (Eds.) Discrete Differential Geometry; Number 38 in Oberwolfach Seminars; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Padula, S.L.; Kincaid, R.K. Optimization strategies for sensor and actuator placement. In Langley Research; NASA: Washington, DC, USA, 1999. [Google Scholar]
- Sheng, X.; Hu, Y.H. Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks. IEEE Trans. Signal Process. 2005, 53, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Alexander, S.; Kapovitch, V.; Petrunin, A. Invitation to Alexandrov Geometry: CAT[0] Spaces; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, S.; Suvorov, A.G.; Wang, Z.; Moran, B. The Information Geometry of Sensor Configuration. Sensors 2021, 21, 5265. https://doi.org/10.3390/s21165265
Williams S, Suvorov AG, Wang Z, Moran B. The Information Geometry of Sensor Configuration. Sensors. 2021; 21(16):5265. https://doi.org/10.3390/s21165265
Chicago/Turabian StyleWilliams, Simon, Arthur George Suvorov, Zengfu Wang, and Bill Moran. 2021. "The Information Geometry of Sensor Configuration" Sensors 21, no. 16: 5265. https://doi.org/10.3390/s21165265