Can Intraoperative Intra-Articular Loads Predict Postoperative Knee Joint Laxity Following Total Knee Arthroplasty? A Cadaver Study with Smart Tibial Trays
<p>Intraoperative intra-articular loads in the medial (solid) and lateral (dashed) compartments of each specimen reduced with increasing knee flexion.</p> "> Figure 2
<p>(<b>a</b>) Tibial abduction–adduction during the varus and valgus laxity tests measured postoperatively and (<b>b</b>) intra-articular loads in the medial and lateral compartments measured intraoperatively for increasing knee flexion angles (data represented as mean ± standard deviation across four specimens).</p> "> Figure 3
<p>Peak total intra-articular load (sum of loads measured in the medial and lateral compartments) across the range of knee flexion for each specimen measured intraoperatively (blue), and during passive flexion–extension (green), open-chain extension (orange), and active squatting (red). Peak load was observed in extension when measured intraoperatively (0°) and during passive flexion–extension (0°) and open-chain extension (10°), while peak load during squatting was observed in deep flexion (100°).</p> "> Figure 4
<p>Peak total intra-articular load distribution in the medial (left) and lateral (right) compartments across the range of knee flexion for each specimen measured intraoperatively (blue) and during passive flexion–extension (green), open-chain extension (orange), and active squatting (red). Peak load was observed in extension when measured intraoperatively (0°) and during passive flexion–extension (0°) and open-chain extension (10°), while peak load during squatting was observed in deep flexion (100°).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. TKA Surgery
2.3. Experimental Testing
2.4. Data Analysis
3. Results
3.1. Intraoperative Intra-Articular Loads
3.2. Postoperative Laxity vs. Intraoperative Intra-Articular Load
3.3. Peak Intra-Articular Load
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharkey, P.F.; Lichstein, P.M.; Shen, C.; Tokarski, A.T.; Parvizi, J. Why are total knee arthroplasties failing today—Has anything changed after 10 years? J. Arthroplast. 2014, 29, 1774–1778. [Google Scholar] [CrossRef] [PubMed]
- Shalhoub, S.; Lawrence, J.M.; Keggi, J.M.; Randall, A.L.; DeClaire, J.H.; Plaskos, C. Imageless, robotic-assisted total knee arthroplasty combined with a robotic tensioning system can help predict and achieve accurate postoperative ligament balance. Arthroplast. Today 2019, 5, 334–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, S.; Ito, H. Ligament balancing in total knee arthroplasty—Medial stabilizing technique. Asia Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2015, 2, 108–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, T.; Muratsu, H.; Tsumura, N.; Mizuno, K.; Kuroda, R.; Yoshiya, S.; Kurosaka, M. Joint gap kinematics in posterior-stabilized total knee arthroplasty measured by a new tensor with the navigation system. J. Biomech. Eng. 2006, 128, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Camarata, D.A. Soft tissue balance in total knee arthroplasty with a force sensor. Orthop. Clin. N. Am. 2014, 45, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Roche, M.; Elson, L.; Anderson, C. Dynamic soft tissue balancing in total knee arthroplasty. Orthop. Clin. N. Am. 2014, 45, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Meere, P.A.; Schneider, S.M.; Walker, P.S. Accuracy of balancing at total knee surgery using an instrumented tibial trial. J. Arthroplast. 2016, 31, 1938–1942. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, D.; Vanheule, V.; Wirix-Speetjens, R.; Taylan, O.; Delport, H.P.; Scheys, L.; Andersen, M.S. A novel non-invasive method for measuring knee joint laxity in four dof: In vitro proof-of-concept and validation. J. Biomech. 2019, 82, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peersman, G.; Slane, J.; Vuylsteke, P.; Fuchs-Winkelmann, S.; Dworschak, P.; Heyse, T.; Scheys, L. Kinematics of mobile-bearing unicompartmental knee arthroplasty compared to native: Results from an in vitro study. Arch. Orthop. Trauma Surg. 2017, 137, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Victor, J.; van Doninck, D.; Labey, L.; Innocenti, B.; Parizel, P.M.; Bellemans, J. How precise can bony landmarks be determined on a CT scan of the knee? Knee 2009, 16, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.A.; Regehr, G.; Reznick, R.; Macrae, H.; Murnaghan, J.; Hutchison, C.; Brown, M. Objective structured assessment of technical skill (OSATS) for surgical residents: Objective Structured Assessment of Technical Skill. Br. J. Surg. 1997, 84, 273–278. [Google Scholar] [CrossRef]
- Noordin, S.; Allana, S. OSATS for total knee replacement: Assessment of surgical competence in the operating room. JPMA J. Pak. Med. Assoc. 2015, 65, S52–S54. [Google Scholar]
- Victor, J.; van Glabbeek, F.; Sloten, J.V.; Parizel, P.M.; Somville, J.; Bellemans, J. An experimental model for kinematic analysis of the knee. J. Bone Jt. Surg. 2009, 91, 150–163. [Google Scholar] [CrossRef] [PubMed]
- LaPrade, R.F.; Bernhardson, A.S.; Griffith, C.J.; Macalena, J.A.; Wijdicks, C.A. Correlation of valgus stress radiographs with medial knee ligament injuries: An in vitro biomechanical study. Am. J. Sports Med. 2010, 38, 330–338. [Google Scholar] [CrossRef] [PubMed]
- LaPrade, R.F.; Heikes, C.; Bakker, A.J.; Jakobsen, R.B. The reproducibility and repeatability of varus stress radiographs in the assessment of isolated fibular collateral ligament and grade-III posterolateral knee injuries: An in vitro biomechanical study. J. Bone Jt. Surg. Am. Vol. 2008, 90, 2069–2076. [Google Scholar] [CrossRef] [PubMed]
- Gustke, K.A.; Golladay, G.J.; Roche, M.W.; Elson, L.C.; Anderson, C.R. A new method for defining balance. J. Arthroplast. 2014, 29, 955–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustke, K.A.; Golladay, G.J.; Roche, M.W.; Elson, L.C.; Anderson, C.R. Primary TKA patients with quantifiably balanced soft-tissue achieve significant clinical gains sooner than unbalanced patients. Adv. Orthop. 2014, 2014, 628695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyse, T.; Slane, J.; Peersman, G.; Dworschak, P.; Fuchs-Winkelmann, S.; Scheys, L. Balancing mobile-bearing unicondylar knee arthroplasty in vitro. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3733–3740. [Google Scholar] [CrossRef]
Spec 1 | Spec 2 | Spec 3 | Spec 4 | Mean (SD) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Postoperative laxity | Flex | Var | Val | Var | Val | Var | Val | Var | Val | Var | Val |
0° | 1.2 | 0.9 | 0.5 | 0.6 | 2.2 | 0.9 | 3.7 | 3.1 | 1.9 (1.4) | 1.4 (1.1) | |
30° | 1.4 | 1.7 | 0.6 | 1.1 | 2.2 | 4.0 | 5.6 | 4.6 | 2.5 (2.2) | 2.9 (1.7) | |
60° | 1.8 | 1.9 | 2.0 | 2.1 | 1.9 | 5.9 | 3.8 | 7.4 | 2.4 (1.0) | 4.3 (2.7) | |
90° | 2.3 | 2.5 | 3.0 | 6.2 | 2.3 | 5.9 | 4.4 | 8.9 | 3.0 (1.0) | 5.9 (2.6) | |
Intraoperative loads | Flex | Med | Lat | Med | Lat | Med | Lat | Med | Lat | Med | Lat |
0° | 618.3 | 129.0 | 351.4 | 1063.1 | 885.2 | 44.5 | 62.3 | 40.0 | 479.3 (353.2) | 319.1 (497.6) | |
30° | 618.3 | 0.0 | 177.9 | 298.0 | 618.3 | 40.0 | 40.0 | 0.0 | 363.6 (299.4) | 84.5 (143.6) | |
60° | 382.5 | 0.0 | 115.6 | 53.4 | 458.1 | 0.0 | 22.2 | 0.0 | 244.6 (208.7) | 13.3 (26.7) | |
90° | 133.4 | 0.0 | 80.1 | 53.4 | 244.6 | 0.0 | 0.0 | 0.0 | 114.5 (102.6) | 13.3 (26.7) | |
R | −0.99 | −0.86 | −0.80 | −0.62 | −0.08 | −0.88 | −0.07 | −0.74 | −0.93 | −0.88 | |
p-value | <0.01 | 0.05 | 0.08 | 0.17 | 0.35 | 0.04 | 0.35 | 0.11 | 0.02 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, D.S.; Taylan, O.; Verstraete, M.; Berger, P.; Vandenneucker, H.; Scheys, L. Can Intraoperative Intra-Articular Loads Predict Postoperative Knee Joint Laxity Following Total Knee Arthroplasty? A Cadaver Study with Smart Tibial Trays. Sensors 2021, 21, 5078. https://doi.org/10.3390/s21155078
Shah DS, Taylan O, Verstraete M, Berger P, Vandenneucker H, Scheys L. Can Intraoperative Intra-Articular Loads Predict Postoperative Knee Joint Laxity Following Total Knee Arthroplasty? A Cadaver Study with Smart Tibial Trays. Sensors. 2021; 21(15):5078. https://doi.org/10.3390/s21155078
Chicago/Turabian StyleShah, Darshan S., Orçun Taylan, Matthias Verstraete, Pieter Berger, Hilde Vandenneucker, and Lennart Scheys. 2021. "Can Intraoperative Intra-Articular Loads Predict Postoperative Knee Joint Laxity Following Total Knee Arthroplasty? A Cadaver Study with Smart Tibial Trays" Sensors 21, no. 15: 5078. https://doi.org/10.3390/s21155078
APA StyleShah, D. S., Taylan, O., Verstraete, M., Berger, P., Vandenneucker, H., & Scheys, L. (2021). Can Intraoperative Intra-Articular Loads Predict Postoperative Knee Joint Laxity Following Total Knee Arthroplasty? A Cadaver Study with Smart Tibial Trays. Sensors, 21(15), 5078. https://doi.org/10.3390/s21155078