Classification of the Acoustics of Loose Gravel †
<p>Example images of gravel roads for the Swedish gravel road assessment manual defined by Trafikverket showing the severity level for loose gravel: from <b>1</b> “good condition” roads to <b>4</b> “worst condition” roads. These images provide a guideline/ground truth for the experts to compare real-time images with these standard images and assign a rating to a particular road under observation. Maintenance plans are decided according to these ratings for each road. Detailed descriptions of each road type are defined in <a href="#sensors-21-04944-t001" class="html-table">Table 1</a> [<a href="#B19-sensors-21-04944" class="html-bibr">19</a>].</p> "> Figure 2
<p>This photograph was taken using the camera inside the car and shows the camera on the car’s bonnet. The camera installed inside was intended to record in-car audio recordings of gravel hitting the bottom. While the camera outside had better video recordings of the gravel road.</p> "> Figure 3
<p>Map showing the trip where data collection took place on gravel roads on the outskirts of Borlänge and in Skenshyttan, Sweden.</p> "> Figure 4
<p>Algorithms used for classification by supervised learning.</p> "> Figure 5
<p>Example of processing of the recorded signals. Sound signal of gravel (<b>a</b>) and non-gravel (<b>b</b>) in the frequency domain. More high magnitude frequencies are observed in gravel sounds.</p> "> Figure 6
<p>Spectrogram images of non-gravel and gravel sound.</p> "> Figure 7
<p>Classification performance of the classical algorithm. The figure shows the true positive rate of detection of both classes. EBT outperforms all the other algorithms in classifying instances of both classes.</p> "> Figure 8
<p>Training and validation accuracy and loss plots obtained from CNN.</p> ">
Abstract
:1. Introduction
2. Problem Background
Diagnostic Standards
3. Materials and Methods
3.1. Supervised Machine Learning Algorithms
3.1.1. Support Vector Machines (SVMs)
3.1.2. Decision Trees
3.1.3. Ensemble Classification
- (i)
- Classifier selection: The classifier performing best is selected.
- (ii)
- Classifier fusion: The output of all the classifiers is combined for the final decision.
- (i)
- (ii)
- Boosting is a general ensemble method that creates a strong classifier from a number of weak classifiers. A model is built from the training data, and then a second model is created that corrects errors from the first model. Models are added until the training set is predicted perfectly or a maximum number of models are added [63,64].
- (iii)
- Bootstrap aggregating is also called bagging. It involves having each model in the ensemble vote with equal weight. To promote model variance, bagging trains each model in the ensemble using a randomly drawn subset of the training set: e.g., the random forest algorithm combines random decision trees with bagging to achieve very high classification accuracy [65,66].
- (iv)
- Rotation forest, where every decision tree is trained by applying principal component analysis (PCA) to a random subset of input features [57].
- (v)
- We used ensemble bagged tree (EBT) based classification in this study. Bagging is considered highly accurate and the most efficient of ensemble approaches. Bagged decision trees can improve the performance of decision trees since they aggregate the results of multiple decision trees. In a given data set, bootstrapped subsamples are drawn, and a decision tree is established on each bootstrapped sample. The result of each decision tree is aggregated to yield a robust and accurate predictor [67,68].
3.2. Data Preparation and Pre-Selection of Gravel and Non-Gravel Sound Events
3.2.1. Gravel Sound
3.2.2. Non-Gravel Sound
3.3. Signal Processing and Feature Selection
3.4. Classification of Audio Spectrograms Using Convolutional Neural Networks (CNN)
Spectrograms
4. Results
4.1. Results from Supervised Learning
4.2. Results from CNN
5. Conclusions, Limitations, and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnsson, R.; Odelius, J. Methods for Road Texture Estimation Using Vehicle Measurements. In Proceedings of the International Conference on Noise and Vibration Engineering, Leuven, Belgium, 17–19 September 2012; Volume 2, pp. 1573–1582. [Google Scholar]
- Raza, A.; Mehmood, A.; Ullah, S.; Ahmad, M.; Choi, G.S.; On, B.W. Heartbeat sound signal classification using deep learning. Sensors 2019, 19, 4819. [Google Scholar] [CrossRef] [Green Version]
- Briggs, F.; Lakshminarayanan, B.; Neal, L.; Fern, X.Z.; Raich, R.; Hadley, S.J.K.; Hadley, A.; Betts, M.G. Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach. J. Acoust. Soc. Am. 2012, 131, 4640–4650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiriparian, S.; Gerczuk, M.; Ottl, S.; Cummins, N.; Freitag, M.; Pugachevskiy, S.; Baird, A.; Schuller, B. Snore Sound Classification Using Image-Based Deep Spectrum Features. Interspeech 2017, 3512–3516. [Google Scholar] [CrossRef] [Green Version]
- Cabral, F.S.; Pinto, M.; Mouzinho, F.A.L.N.; Fukai, H.; Tamura, S. An Automatic Survey System for Paved and Unpaved Road Classification and Road Anomaly Detection using Smartphone Sensor. In Proceedings of the 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), Singapore, 31 July–2 August 2018; pp. 65–70. [Google Scholar]
- Cord, A.; Chambon, S. Automatic Road Defect Detection by Textural Pattern Recognition Based on AdaBoost. Comput. Civ. Infrastruct. Eng. 2011, 27, 244–259. [Google Scholar] [CrossRef]
- Ngwangwa, H.; Heyns, P.; Breytenbach, H.; Els, S. Reconstruction of road defects and road roughness classification using Artificial Neural Networks simulation and vehicle dynamic responses: Application to experimental data. J. Terramechanics 2014, 53, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Albatayneh, O.; Forslöf, L.; Ksaibati, K. Developing and validating an image processing algorithm for evaluating gravel road dust. Int. J. Pavement Res. Technol. 2019, 12, 288–296. [Google Scholar] [CrossRef]
- Albatayneh, O.; Moomen, M.; Farid, A.; Ksaibati, K. Complementary Modeling of Gravel Road Traffic-Generated Dust Levels Using Bayesian Regularization Feedforward Neural Networks and Binary Probit Regression. Int. J. Pavement Res. Technol. 2020, 13, 255–262. [Google Scholar] [CrossRef]
- Zhang, C.; Elaksher, A. An Unmanned Aerial Vehicle-Based Imaging System for 3D Measurement of Unpaved Road Surface Distresses1. Comput. Civ. Infrastruct. Eng. 2011, 27, 118–129. [Google Scholar] [CrossRef]
- Rundbom, P. Microphones. Available online: https://en.compotech.se/products/loudspeakers-microphones/mikrofoner/ (accessed on 7 May 2021).
- Plinge, A.; Jacob, F.; Haeb-Umbach, R.; Fink, G.A. Acoustic Microphone Geometry Calibration: An overview and experimental evaluation of state-of-the-art algorithms. IEEE Signal Process. Mag. 2016, 33, 14–29. [Google Scholar] [CrossRef]
- Rubin, J.; Abreu, R.; Ganguli, A.; Nelaturi, S.; Matei, I.; Sricharan, K. Recognizing abnormal heart sounds using deep learning. arXiv 2017, arXiv:1707.04642. [Google Scholar]
- Zhang, W.; Han, J.; Deng, S. Heart sound classification based on scaled spectrogram and partial least squares regression. Biomed. Signal Process. Control. 2017, 32, 20–28. [Google Scholar] [CrossRef]
- Ahmad, S.F.; Singh, D.K. Properties, Automatic detection of tree cutting in forests using acoustic. J. King Saud Univ.Comput. Inf. Sci. Sci. Direct 2019. [Google Scholar] [CrossRef]
- Stowell, D.; Giannoulis, D.; Benetos, E.; Lagrange, M.; Plumbley, M. Detection and Classification of Acoustic Scenes and Events. IEEE Trans. Multimed. 2015, 17, 1733–1746. [Google Scholar] [CrossRef]
- Saeed, N.; Alam, M.; Nyberg, R.G.; Dougherty, M.; Jomaa, D.; Rebreyend, P. Comparison of Pattern Recognition Techniques for Classification of the Acoustics of Loose Gravel. In Proceedings of the 7th International Conference on Soft Computing & Machine Intelligence (ISCMI 2020), Stockholm, Sweden, 14–15 November 2020; pp. 237–243. [Google Scholar] [CrossRef]
- Kans, M.; Campos, J.; Håkansson, L. Condition Monitoring of Gravel Roads–Current Methods and Future Directions. In Blockchain Technology and Innovations in Business Processes; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 451–461. [Google Scholar]
- Hossein, A. Bedömning av Grusväglag(Assesment of Gravel Roads); Version 1.0; TDOK 2014:0135; Trafikverket: Borlänge, Sweden, 2014. [Google Scholar]
- Bergh, T.; Nordqvist, K.; Strömgren, P.; Davidsson, F.; Bång, K.L.; Carlsson, A. Capacity Issues in Sweden-Applications and Research. Transp. Res. Procedia 2016, 15, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Saeed, N.; Dougherty, M.; Nyberg, R.G.; Rebreyend, P.; Jomaa, D. A Review of Intelligent Methods for Unpaved Roads Condition Assessment. In Proceedings of the 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 September 2020; pp. 79–84. [Google Scholar] [CrossRef]
- Edvardsson, K. Gravel Roads and Dust Suppression. Road Mater. Pavement Des. 2009, 10, 439–469. [Google Scholar] [CrossRef]
- Huntington, G.; Ksaibati, K. Volume 3 Gravel Road Management: Programming Guide, No. FHWA-WY-10/03F. 2010. Available online: https://rosap.ntl.bts.gov/view/dot/23972 (accessed on 7 May 2021).
- Nyberg, R.G.; Yella, S.; Gupta, N.K.; Dougherty, M. Inter-rater Reliability in Determining the Types of Vegetation on Railway Trackbeds. In Proceedings of the Web Information Systems Engineering (WISE 2015), Miami, FL, USA, 1–3 November 2015; pp. 379–390. [Google Scholar]
- Alzubaidi, H. On Rating of Gravel Roads. Ph.D. Thesis, Institutionen för Infrastruktur och Samhällsplanering, Royal Institute of Technology (KTH), Stockholm, Sweden, 2001. [Google Scholar]
- Souza, V.M.; Giusti, R.; Batista, A.J. Asfault: A low-cost system to evaluate pavement conditions in real-time using smartphones and machine learning. Pervasive Mob. Comput. 2018, 51, 121–137. [Google Scholar] [CrossRef]
- Allouch, A.; Koubaa, A.; Abbes, T.; Ammar, A. RoadSense: Smartphone Application to Estimate Road Conditions Using Accelerometer and Gyroscope. IEEE Sens. J. 2017, 17, 4231–4238. [Google Scholar] [CrossRef]
- Forslöf, L.; Jones, H. Roadroid: Continuous Road Condition Monitoring with Smart Phones. J. Civ. Eng. Arch. 2015, 9, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Huntington, G.; Ksaibati, K. Management of Unsealed Gravel Roads State of the Practice in American Counties. Transp. Res. Rec. 2011, 2232. [Google Scholar] [CrossRef]
- Walker, D.; Entine, L.; Kummer, S. Pavement Surface Evaluation and Rating PASER Manual; Madison Transportation Information Center, University of Wisconsin: Madison, WI, USA, 1987. [Google Scholar]
- Ballester, P.; Araujo, R.M. On the performance of googlenet and alexnet applied to sketches. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 1124–1128. [Google Scholar]
- Ren, Z.; Qian, K.; Zhang, Z.; Pandit, V.; Baird, A.; Schuller, B. Deep Scalogram Representations for Acoustic Scene Classification. IEEE/CAA J. Autom. Sin. 2018, 5, 662–669. [Google Scholar] [CrossRef]
- Al-Qizwini, M.; Barjasteh, I.; Al-Qassab, H.; Radha, H. Deep learning algorithm for autonomous driving using googlenet. In Proceedings of the IEEE Intelligent Vehicles Symposium, Redondo Beach, CA, USA, 11–14 June 2017; pp. 89–96. [Google Scholar]
- Ashour, A.S.; Guo, Y.; Hawas, A.R.; Xu, G. Ensemble of subspace discriminant classifiers for schistosomal liver fibrosis staging in mice microscopic images. Health Inf. Sci. Syst. 2018, 6, 21. [Google Scholar] [CrossRef]
- Lyon, R. Machine Hearing: An Emerging Field Exploratory DSP. IEEE Signal Process. Mag. 2010, 27, 131–139. [Google Scholar] [CrossRef]
- Eaton, R.A. Unsurfaced Road Maintenance Management; U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory: Hanover, NH, USA, 1992. [Google Scholar]
- Skorseth, K. Gravel Roads: Maintenance and Design Manual; U.S. Department of Transportation, Federal Highway Administration: Washington, DC, USA, 2000. [Google Scholar]
- Gorges, C.; Öztürk, K.; Liebich, R. Impact detection using a machine learning approach and experimental road roughness classification. Mech. Syst. Signal Process. 2019, 117, 738–756. [Google Scholar] [CrossRef]
- Abulizi, N.; Kawamura, A.; Tomiyama, K.; Fujita, S. Measuring and evaluating of road roughness conditions with a compact road profiler and ArcGIS. J. Traffic Transp. Eng. 2016, 3, 398–411. [Google Scholar] [CrossRef] [Green Version]
- Rajab, M.I.; Alawi, M.H.; Saif, M.A. Application of image processing to measure road distresses. WSEAS Trans. Inf. Sci. Appl. 2008, 5, 1–7. [Google Scholar]
- Gopalakrishnan, K.; Khaitan, S.K.; Choudhary, A.; Agrawal, A. Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 2017, 157, 322–330. [Google Scholar] [CrossRef]
- Wang, H.-W.; Chen, C.-H.; Cheng, D.-Y.; Lin, C.-H.; Lo, C.-C. A Real-Time Pothole Detection Approach for Intelligent Transportation System. Math. Probl. Eng. 2015, 2015, 869627. [Google Scholar] [CrossRef] [Green Version]
- Mednis, A.; Strazdins, G.; Zviedris, R.; Kanonirs, G.; Selavo, L. Real time pothole detection using Android smartphones with accelerometers. In Proceedings of the 2011 International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS), Barcelona, Spain, 27–29 June 2011; pp. 1–6. [Google Scholar]
- Cline, G.D.; Shahin, M.Y.; Burkhalter, J.A. Automated data collection for pavement condition Index Survey. In Proceedings of the Pavement Evaluation Conference, Roanoke, VA, USA, 21–25 October 2002. [Google Scholar]
- Sodikov, J.; Tsunokawa, K.; Ul-Islam, R. Road Survey with ROMDAS System: A Study in Akita Prefecture. Available online: http://www.saitama-u.ac.jp/kiyoukougaku/2004/2004_commu_011.pdf (accessed on 7 May 2021).
- Patle, A.; Chouhan, D.S. SVM kernel functions for classification. In Proceedings of the 2013 International Conference on Advances in Technology and Engineering (ICATE), Mumbai, India, 23–25 January 2013; pp. 1–9. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Zhang, F.; Deb, C.; Lee, S.E.; Yang, J.; Shah, K.W. Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique. Energy Build. 2016, 126, 94–103. [Google Scholar] [CrossRef]
- Bhavsar, H.; Panchal, M.H. A Review on Support Vector Machine for Data Classification. Int. J. Adv. Res. Comput. Eng. Technol. 2012, 1, 185–189. [Google Scholar]
- Rokach, L.; Maimon, O. Data Mining with Decision Trees-Theory and Applications; World Scientific: Singapore, 2007; Volume 69. [Google Scholar]
- Ciaburro, G.; Ayyadevara, V.K.; Perrier, A. Hands-on Machine Learning on Google Cloud Platform: Implementing Smart and Efficient Analytics Using Cloud Ml Engine; Packt Publishing Ltd.: Birmingham, UK, 2018. [Google Scholar]
- Decision Trees in Machine Learning. Available online: https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052 (accessed on 28 May 2021).
- Saeed, M.S.; Mustafa, M.W.; Sheikh, U.U.; Jumani, T.A.; Mirjat, N.H. Ensemble Bagged Tree Based Classification for Reducing Non-Technical Losses in Multan Electric Power Company of Pakistan. Electronics 2019, 8, 860. [Google Scholar] [CrossRef] [Green Version]
- Rokach, L.; Maimon, O. Decision Trees. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2005; pp. 165–192. [Google Scholar]
- Kuncheva, L.I. Combining Pattern Classifiers: Methods and Algorithms; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Kim, M.-J.; Kang, D.-K. Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction. Expert Syst. Appl. 2012, 39, 9308–9314. [Google Scholar] [CrossRef]
- Muhlbaier, M.; Topalis, A.; Polikar, R. Ensemble Confidence Estimates Posterior Probability. In Computer Vision; Springer Science and Business Media LLC: Berlin, Germany, 2005; Volume 3541, pp. 326–335. [Google Scholar]
- Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6, 21–45. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 2, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.J.; Kuncheva, L.; Alonso, C.J. Rotation Forest: A New Classifier Ensemble Method. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1619–1630. [Google Scholar] [CrossRef]
- Al-Rimy, B.A.S.; Maarof, M.A.; Shaid, S.Z.M. Crypto-ransomware early detection model using novel incremental bagging with enhanced semi-random subspace selection. Futur. Gener. Comput. Syst. 2019, 101, 476–491. [Google Scholar] [CrossRef]
- Kuncheva, L.I.; Rodriguez, J.J.; Plumpton, C.; Linden, D.E.J.; Johnston, S.J. Random Subspace Ensembles for fMRI Classification. IEEE Trans. Med. Imaging 2010, 29, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Svetnik, V.; Wang, T.; Tong, C.; Liaw, A.; Sheridan, R.P.; Song, Q. Boosting: An Ensemble Learning Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Model. 2005, 45, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Drucker, H.; Cortes, C.; Jackel, L.D.; LeCun, Y.; Vapnik, V. Boosting and Other Ensemble Methods. Neural Comput. 1994, 6, 1289–1301. [Google Scholar] [CrossRef]
- Hothorn, T.; Lausen, B. Double-bagging: Combining classifiers by bootstrap aggregation. Pattern Recognit. 2003, 36, 1303–1309. [Google Scholar] [CrossRef]
- Farid, D.M.; Rahman, M.Z.; Rahman, C.M. An Ensemble Approach to Classifier Construction based on Bootstrap Aggregation. Int. J. Comput. Appl. 2011, 25, 30–34. [Google Scholar] [CrossRef]
- Mishra, P.K.; Yadav, A.; Pazoki, M.A. Novel Fault Classification Scheme for Series Capacitor Compensated Transmission Line Based on Bagged Tree Ensemble Classifier. IEEE Access 2018, 6, 27373–27382. [Google Scholar] [CrossRef]
- Himeur, Y.; Alsalemi, A.; Bensaali, F.; Amira, A. Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree. Appl. Energy 2020, 267, 114877. [Google Scholar] [CrossRef]
- R Core Team. R Language Definition, R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2000. [Google Scholar]
- Reno, A.; Hunter, A.W.; Li, Y.; Ye, T.; Foley, A.C. Quantification of Cardiomyocyte Beating Frequency Using Fourier Transform Analysis. Photon 2018, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Khamparia, A.; Gupta, D.; Nguyen, N.G.; Khanna, A.; Pandey, B.; Tiwari, P. Sound Classification Using Convolutional Neural Network and Tensor Deep Stacking Network. IEEE Access 2019, 7, 7717–7727. [Google Scholar] [CrossRef]
- Smith, J.O., III. Spectrograms 2018. Available online: https://ccrma.stanford.edu/~jos/mdft/Spectrograms.html (accessed on 28 March 2021).
- Li, Y.; Hao, Z.B.; Lei, H. Survey of convolutional neural network. J. Comput. Appl. 2016, 36, 2508–2515. [Google Scholar]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar]
- Hedjazi, M.A.; Kourbane, I.; Genc, Y. On identifying leaves: A comparison of CNN with classical ML methods. In Proceedings of the 25th Signal Processing and Communications Applications Conference (SIU), Antalya, Turkey, 15–18 May 2017; pp. 1–4. [Google Scholar]
- Aghdam, H.H.; Heravi, E.J. Guide to Convolutional Neural Networks; Springer Science and Business Media LLC: Berlin, Germany, 2017. [Google Scholar]
- Acharya, D.; Yan, W.; Khoshelham, K. Real-Time Image-Based Parking Occupancy Detection and Automatic Parking Slot Deliniation Using Deep Learning: A Tutorial. 2020. Available online: https://www.researchgate.net/publication/344921345_Real-time_image-based_parking_occupancy_detection_and_automatic_parking_slot_delineation_using_deep_learning_A_tutorial (accessed on 15 November 2020).
- Lau, S.L.H.; Chong, E.K.P.; Yang, X.; Wang, X. Automated Pavement Crack Segmentation Using U-Net-Based Convolutional Neural Network. IEEE Access 2020, 8, 114892–114899. [Google Scholar] [CrossRef]
- Zhang, L.; Schaeffer, H. Forward Stability of ResNet and Its Variants. J. Math. Imaging Vis. 2020, 62, 328–351. [Google Scholar] [CrossRef] [Green Version]
- Ciaburro, G. Sound Event Detection in Underground Parking Garage Using Convolutional Neural Network. Big Data Cogn. Comput. 2020, 4, 20. [Google Scholar] [CrossRef]
- Schlüter, J.; Böck, S. Improved musical onset detection with convolutional neural network. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 6979–6983. [Google Scholar]
- Eghbal-Zadeh, H.; Lehner, B.; Dorfer, M.; Widmer, G. A Hybrid Approach Using Binaural I-Vectors and Deep Convolutional Neural Networks. In Proceedings of the 25th European Signal Processing Conference (EUSIPCO 2017), Kos Island, Greece, 28 August–2 September 2017; pp. 5024–5028. [Google Scholar]
- Huang, Z.; Dong, M.; Mao, Q.; Zhan, Y. Speech emotion recognition using CNN. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 801–804. [Google Scholar]
- Abdel-Hamid, O.; Mohamed, A.-R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional Neural Networks for Speech Recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [Google Scholar] [CrossRef] [Green Version]
- Sainath, T.N.; Kingsbury, B.; Saon, G.; Soltau, H.; Mohamed, A.-R.; Dahl, G.; Ramabhadran, B. Deep Convolutional Neural Networks for Large-scale Speech Tasks. Neural Netw. 2015, 64, 39–48. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In Proceedings of the 31st International Conference on Machine Learning (ICML), Beijing, China, 21–26 June 2014; Volume 2, pp. 988–996. [Google Scholar]
- Reyes, A.K.; Caicedo, J.C.; Camargo, J.E. Fine-tuning Deep Convolutional Networks for Plant Recognition. CLEF Work. Notes 2015, 1391, 467–475. [Google Scholar]
- Perez, L.; Wang, J. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. arXiv 2017, arXiv:1712.04621. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Kumar, S.R.; Gayathri, N.; Muthuramalingam, S.; Balamurugan, B.; Ramesh, C.; Nallakaruppan, M. Medical Big Data Mining and Processing in e-Healthcare. Internet Things Biomed. Eng. 2019, 323–339. [Google Scholar] [CrossRef]
- Carneiro, T.; Da Nóbrega, R.V.M.; Nepomuceno, T.; Bian, G.B.; De Albuquerque, V.H.C.; Reboucas Filho, P.P. Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access 2018, 6, 61677–61685. [Google Scholar] [CrossRef]
Severity Level | Description |
---|---|
1 | No loose gravel on the road, but there may be a small amount along the roadside. |
2 | A small amount of loose gravel on the road and in small embankments along the roadside, but this does not affect driving comfort or safety to any notable degree. |
3 | Loose gravel on the road and in small embankments along the roadside significantly affects driving comfort and safety. |
4 | An extensive amount of loose gravel on the road and in marked embankments at the edge of the road affecting driving comfort and safety. |
GoPro Hero 7 Black Specifications Used | |
---|---|
Video | Audio |
Supported shooting formats 4K/60 fps, 4K(4:3)/30 fps, 2.7k/120 fps, 2.7K(4:3)/60 fps, 1440p/120 fps, 1080 p/240 fps, 960/240 fps, 720/240 fps Shooting angles 150° | Bit rate 164 Kbps Channels 2 (stereo) Audio sample rate 48 kHz |
Specification of the Vehicle Used during Data Collection | |
---|---|
Manufacturer | Volkswagen |
Model | Passat GTE 2018 |
Weight | 1806 kg |
Power | 115 kW |
Engine type | Plugin hybrid engine |
Engine size | 1395 cm3/1.4 L |
Tire type | Summer tires |
Tire dimensions | 215/55 R17 94V |
Ground clearance | 14.5 cm/5.71 inches |
Sound level | 70 dB still and 73 dB while driving |
Maximum speed | 225 km/h |
Model | Accuracy (%) |
---|---|
Decision Trees | |
Fine Tree | 93.2 |
Medium Tree | 93.2 |
Coarse Tree | 92.4 |
Support Vector Machine | |
Linear SVM | 92.8 |
Quadratic SVM | 93.7 |
Cubic SVM | 92.8 |
Medium Gaussian SVM | 93.2 |
Coarse Gaussian SVM | 91.1 |
Ensemble Classification | |
Boosted Tree | 95 |
Bagged Tree | 97 |
RUSBoosted Tree | 90.3 |
Convolutional neural network (CNN) | 97.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, N.; Nyberg, R.G.; Alam, M.; Dougherty, M.; Jooma, D.; Rebreyend, P. Classification of the Acoustics of Loose Gravel. Sensors 2021, 21, 4944. https://doi.org/10.3390/s21144944
Saeed N, Nyberg RG, Alam M, Dougherty M, Jooma D, Rebreyend P. Classification of the Acoustics of Loose Gravel. Sensors. 2021; 21(14):4944. https://doi.org/10.3390/s21144944
Chicago/Turabian StyleSaeed, Nausheen, Roger G. Nyberg, Moudud Alam, Mark Dougherty, Diala Jooma, and Pascal Rebreyend. 2021. "Classification of the Acoustics of Loose Gravel" Sensors 21, no. 14: 4944. https://doi.org/10.3390/s21144944
APA StyleSaeed, N., Nyberg, R. G., Alam, M., Dougherty, M., Jooma, D., & Rebreyend, P. (2021). Classification of the Acoustics of Loose Gravel. Sensors, 21(14), 4944. https://doi.org/10.3390/s21144944