Highly Sensitive and Selective Sodium Ion Sensor Based on Silicon Nanowire Dual Gate Field-Effect Transistor
<p>(<b>a</b>) Schematic of the electrospinning system. (<b>b</b>) Fabrication of SiNWs on an SOI substrate.</p> "> Figure 2
<p>(<b>a</b>) Top view and (<b>b</b>) tilted view SEM images of the SiNWs after transferring the pattern template of the PVP NFs to the uppermost Si layer of the SOI wafer.</p> "> Figure 3
<p>Schematic of the (<b>a</b>) SiNW channel DG FET transducer unit and the (<b>b</b>) sodium-selective membrane EG sensing unit.</p> "> Figure 4
<p>Schematic of the (<b>a</b>) SG mode and (<b>b</b>) DG mode sensing operations.</p> "> Figure 5
<p>Transfer characteristic curves for the SiNW channel DG FETs operated by the (<b>a</b>) top gate and (<b>b</b>) bottom gate. The insets display the output characteristic curves.</p> "> Figure 6
<p>The fluctuation of drain current due to square wave pulse (assuming noise) applied to the voltage sweep under SG and DG operation mode.</p> "> Figure 7
<p>(<b>a</b>) Transfer characteristic curves of the SiNW channel DG FET during the bottom gate operation with a constant top gate bias varying from +600 to −600 mV (in steps of 300 mV). (<b>b</b>) Variation in the top gate bias with ΔV<sub>ref</sub>.</p> "> Figure 8
<p>Transfer characteristic curves of the sodium ion sensor based on a SiNW channel DG FET with a sodium-selective membrane EG in various buffer solutions: SG mode operations for the (<b>a</b>) NaCl, (<b>b</b>) CaCl<sub>2</sub>, (<b>c</b>) KCl, and (<b>d</b>) pH buffer solutions, and DG mode operations for the (<b>e</b>) NaCl, (<b>f</b>) CaCl<sub>2</sub>, (<b>g</b>) KCl, and (<b>h</b>) pH buffer solutions.</p> "> Figure 9
<p>Sensitivity of the sodium ion sensor based on a SiNW channel DG FET with sodium-selective membrane EG in various buffer solutions during the (<b>a</b>) SG mode and (<b>b</b>) DG mode operations.</p> "> Figure 10
<p>Hysteresis effects of the sodium ion sensor based on SiNW channel DG FETs with sodium-selective membrane EG during the (<b>a</b>) SG mode and (<b>b</b>) DG mode operations.</p> "> Figure 11
<p>Drift effects of the sodium ion sensor based on SiNW channel DG FETs with a sodium-selective membrane EG after exposure to a sodium electrolyte concentration of 10<sup>−4</sup> M for 10 h during the (<b>a</b>) SG mode and (<b>b</b>) DG mode operations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of SiNWs on SOI Wafer
2.2. Fabrication of SiNW Channel DG Field-Effect Transistors
2.3. Fabrication of Sodium-Selective Membrane EG
2.4. Characterization of SiNW Channel DG FET and Sodium Ion-Selective Sensor
3. Results and Discussion
3.1. Electrical Characteristics of SiNW Channel DG FETs
3.2. Signal Amplification Capabilities of SiNW Channel DG FETs
3.3. Signal Amplification Capabilities of SiNW Channel DG FETs
3.4. Reliability and Stability Evaluation of Sodium Ion Sensors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hsu, H.Y.; Wu, C.Y.; Lee, H.C.; Lin, J.L.; Chin, Y.L.; Sun, T.P. Sodium and potassium sensors based on separated extended gate field effect transistor. Biomed. Eng. Appl. Basis Commun. 2009, 21, 441–444. [Google Scholar] [CrossRef]
- Melzer, K.; Münzer, A.M.; Jaworska, E.; Maksymiuk, K.; Michalska, A.; Scarpa, G. Selective ion-sensing with membrane-functionalized electrolyte-gated carbon nanotube field-effect transistors. Analyst 2014, 139, 4947–4954. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Jung, J.; Lee, K.W.; Yoon, D.H.; Jung, T.S.; Dugasani, S.R.; Park, S.H.; Kim, H.J. Low-cost label-free electrical detection of artificial DNA nanostructures using solution-processed oxide thin-film transistors. ACS Appl. Mater. Interfaces 2013, 5, 10715–10720. [Google Scholar] [CrossRef]
- Matsumoto, A.; Miyahara, Y. Current and emerging challenges of field effect transistor based bio-sensing. Nanoscale 2013, 5, 10702–10718. [Google Scholar] [CrossRef]
- Sarkar, D.; Liu, W.; Xie, X.; Anselmo, A.C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992–4003. [Google Scholar] [CrossRef]
- Ma, S.; Lee, Y.K.; Zhang, A.; Li, X. Label-free detection of Cordyceps sinensis using dual-gate nanoribbon-based ion-sensitive field-effect transistor biosensor. Sens. Actuators B Chem. 2018, 264, 344–352. [Google Scholar] [CrossRef]
- Knopfmacher, O.; Tarasov, A.; Fu, W.; Wipf, M.; Niesen, B.; Calame, M.; Schonenberger, C. Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 2010, 10, 2268–2274. [Google Scholar] [CrossRef]
- Spijkman, M.; Smits, E.C.P.; Cillessen, J.F.M.; Biscarini, F.; Blom, P.W.M.; De Leeuw, D.M. Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors. Appl. Phys. Lett. 2011, 98, 043502. [Google Scholar] [CrossRef] [Green Version]
- Spijkman, M.J.; Myny, K.; Smits, E.C.; Heremans, P.; Blom, P.W.; De Leeuw, D.M. Dual-gate thin-film transistors, integrated circuits and sensors. Adv. Mater. 2011, 23, 3231–3242. [Google Scholar] [CrossRef]
- Lim, H.K.; Fossum, J.G. Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFET’s. IEEE Trans. Electron Devices 1983, 30, 1244–1251. [Google Scholar]
- Jang, H.J.; Cho, W.J. Performance enhancement of capacitive-coupling dual-gate ion-sensitive field-effect transistor in ultra-thin-body. Sci. Rep. 2014, 4, 5284. [Google Scholar] [CrossRef]
- Lee, I.K.; Lee, K.H.; Lee, S.; Cho, W.J. Microwave annealing effect for highly reliable biosensor: Dual-gate ion-sensitive field-effect transistor using amorphous InGaZnO thin-film transistor. ACS Appl. Mater. Interfaces 2014, 6, 22680–22686. [Google Scholar] [CrossRef]
- Lee, I.K.; Jeun, M.; Jang, H.J.; Cho, W.J.; Lee, K.H. A self-amplified transistor immunosensor under dual gate operation: Highly sensitive detection of hepatitis B surface antigen. Nanoscale 2015, 7, 16789–16797. [Google Scholar] [CrossRef]
- Jang, H.J.; Gu, J.G.; Cho, W.J. Sensitivity enhancement of amorphous InGaZnO thin film transistor based extended gate field-effect transistors with dual-gate operation. Sens. Actuators B Chem. 2013, 181, 880–884. [Google Scholar] [CrossRef]
- Cho, S.K.; Cho, W.J. Ultra-high sensitivity pH-sensors using silicon nanowire channel dual-gate field-effect transistors fabricated by electrospun polyvinylpyrrolidone nanofibers pattern template transfer. Sens. Actuators B Chem. 2021, 326, 128835. [Google Scholar] [CrossRef]
- Schmiers, H.; Friebel, J.; Streubel, P.; Hesse, R.; Köpsel, R. Change of chemical bonding of nitrogen of polymeric N-heterocyclic compounds during pyrolysis. Carbon 1999, 37, 1965–1978. [Google Scholar] [CrossRef]
- Chen, S.; Bomer, J.G.; Carlen, E.T.; van den Berg, A. Al2O3/silicon nanoISFET with near ideal Nernstian response. Nano Lett. 2011, 11, 2334–2341. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.J.; Lim, C.M.; Cho, W.J. Highly sensitive ion-sensitive field-effect transistor sensor using fully transparent amorphous In–Ga–Zn–O thin-film transistors. Semicond. Sci. Technol. 2017, 32, 035003. [Google Scholar] [CrossRef]
- Masahara, M.; Liu, Y.; Sakamoto, K.; Endo, K.; Matsukawa, T.; Ishii, K.; Sekigawa, T.; Yamauchi, H.; Tanoue, H.; Kanemaru, S.; et al. Demonstration, analysis, and device design considerations for independent DG MOSFETs. IEEE Trans. Electron Devices 2005, 52, 2046–2053. [Google Scholar] [CrossRef]
- Garcia-Cordero, E.; Bellando, F.; Zhang, J.; Wildhaber, F.; Longo, J.; Guerin, H.; Ionescu, A.M. Three-dimensional integrated ultra-low-volume passive microfluidics with ion-sensitive field-effect transistors for multiparameter wearable sweat analyzers. ACS Nano 2018, 12, 12646–12656. [Google Scholar] [CrossRef]
- Zhang, J.; Rupakula, M.; Bellando, F.; Garcia Cordero, E.; Longo, J.; Wildhaber, F.; Herment, G.; Guerin, H.; Ionescu, A.M. Sweat biomarker sensor incorporating picowatt, three-dimensional extended metal gate ion sensitive field effect transistors. ACS Sens. 2019, 4, 2039–2047. [Google Scholar] [CrossRef]
- Chang, S.P.; Yang, T.H. Sensing performance of EGFET pH sensors with CuO nanowires fabricated on glass substrate. Int. J. Electrochem. Sci. 2012, 7, 5020–5027. [Google Scholar]
- Fung, C.D.; Cheung, P.W.; Ko, W.H. A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor. IEEE Trans. Electron Devices 1986, 33, 8–18. [Google Scholar] [CrossRef]
- Bousse, L.; Mostarshed, S.; van der Schoot, B.; De Rooij, N.F. Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators. Sens. Actuators B Chem. 1994, 17, 157–164. [Google Scholar] [CrossRef]
- Chiang, J.L.; Jan, S.S.; Chou, J.C.; Chen, Y.C. Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide. Sens. Actuators B Chem. 2001, 76, 624–628. [Google Scholar] [CrossRef]
- Pan, T.M.; Lin, J.C.; Wu, M.H.; Lai, C.S. Study of high-k Er2O3 thin layers as ISFET sensitive insulator surface for pH detection. Sens. Actuators B Chem. 2009, 138, 619–624. [Google Scholar] [CrossRef]
Operation Mode | VTH (V) | μFE (cm2/V·s) | SS (mV/dec) | ION/IOFF (A/A) |
---|---|---|---|---|
Top gate | −0.3 | 713.1 | 96.9 | 3.0 × 107 |
Bottom gate | −2.0 | 956.1 | 713.8 | 6.4 × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.-K.; Cho, W.-J. Highly Sensitive and Selective Sodium Ion Sensor Based on Silicon Nanowire Dual Gate Field-Effect Transistor. Sensors 2021, 21, 4213. https://doi.org/10.3390/s21124213
Cho S-K, Cho W-J. Highly Sensitive and Selective Sodium Ion Sensor Based on Silicon Nanowire Dual Gate Field-Effect Transistor. Sensors. 2021; 21(12):4213. https://doi.org/10.3390/s21124213
Chicago/Turabian StyleCho, Seong-Kun, and Won-Ju Cho. 2021. "Highly Sensitive and Selective Sodium Ion Sensor Based on Silicon Nanowire Dual Gate Field-Effect Transistor" Sensors 21, no. 12: 4213. https://doi.org/10.3390/s21124213