An Evaluation of the Factors Affecting ‘Poacher’ Detection with Drones and the Efficacy of Machine-Learning for Detection
<p>Scatterplot showing the relationship between increasing canopy density and probability of detection for TIR images with manual detection.</p> "> Figure 2
<p>Scatterplot showing the relationship between increasing canopy density and probability of detection for RGB images with manual detection.</p> "> Figure 3
<p>Scatterplots showing the relationship between increasing canopy density and probability of detection for both camera angles with manual detection. (<b>A</b>) Canopy vs. 90° camera angle for TIR data, (<b>B</b>) canopy vs. 90° camera angle for RGB data, (<b>C</b>) canopy vs. 45° angle for TIR data, (<b>D</b>) canopy vs. 45° angle for RGB data. The x axes for (<b>A</b>) and (<b>B</b>) (90° angle) and (<b>C</b>) and (<b>D</b>) (45° angle) are in opposite directions to represent the direction the test subject walked from point to point.</p> "> Figure 4
<p>Scatterplot showing the relationship between increasing canopy density and probability of detection for TIR images with automated detection.</p> "> Figure 5
<p>Scatterplot showing the relationship between increasing canopy density and probability of detection for RGB images with automated detection.</p> "> Figure A1
<p>Diagram of the study site and the example locations. The white measuring tape indicates the boundaries of the study site (30 × 30 m). The different coloured spots represent the different sequences of locations. The arrows indicate where the test subject was instructed to walk; they then repeated this same walk backwards.</p> "> Figure A2
<p>Thermal images showing the false positives caused by hot ground (top) and hot rocks (bottom). The red squares indicate the false positives.</p> "> Figure A3
<p>Thermal images showing the false positives caused by hot ground and rocks. The red arrows indicate the false positives.</p> "> Figure A4
<p>Comparison between thermal (top) and RGB images (bottom) at an oblique angle. Both images were taken in the same area and with the test subject in the same location. The red square indicates the location of the test subject.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Flight Plan
2.2. Drones and Cameras
2.3. Canopy Density
2.4. Stationary or Walking Test Subjects
2.5. Camera Angle
2.6. Image Processing and Manual Analysis
2.7. Automated Detection Software
2.8. Rock Density vs. False Positives
2.9. Statistical Analysis
3. Results
3.1. Manual Analysis: Thermal Data Model
3.2. Manual Analysis: RGB Data Model
3.3. Manual Analysis: Comparison between Thermal and RGB Models
3.4. Automatic Detection Analysis: Thermal Data Model
3.5. Automated Detection Analysis: RGB Data Model
3.6. Automated Detection Analysis: Comparison between Thermal and RGB Models
3.7. Comparison between Manual and Automated Analysis
3.8. Rock Density vs. False Positives in Automated Analysis
4. Discussion
4.1. Technical and Environmental Attributes
4.2. Manual vs. Automated Detection
4.3. Challenges for the Usage of Drones in Conservation Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Study Site
Appendix B. Model Selection for Manual Analysis
Df | LogLik | AICc | Delta | Weight | |
---|---|---|---|---|---|
Camera angle + canopy density | 11 | −1193.274 | 2408.7 | 0.000 | 0.46 |
Camera angle + canopy density + stationary/walking | 11 | −1193.274 | 2408.7 | 0.000 | 0.46 |
Df | LogLik | AICc | Delta | Weight | |
---|---|---|---|---|---|
Camera angle + canopy density + time of day | 12 | −2728.998 | 5482.1 | 0.000 | 0.5 |
Camera angle + canopy density + stationary/walking + time of day | 16 | −2728.998 | 5482.1 | 0.000 | 0.5 |
Appendix C. Probability of Detection vs. Canopy Density at Different Camera Angles for Manual Analysis
90° Camera Angle | 45° Camera Angle | ||||
---|---|---|---|---|---|
Estimate | p-Value | Estimate | p-Value | ||
(Intercept) | 3.338 | <2 × 10−6 | (Intercept) | 1.497 | <2 × 10−6 |
Canopy density | Canopy density | ||||
Open-low | −1.523 | 4.36 × 10−6 | High | −1.599 | <2 × 10−6 |
Low | −1.783 | 4.39 × 10−8 | High-med | −1.429 | 3.06 × 10−16 |
Low-med | −2.1697 | 1.09 × 10−11 | Med | −1.256 | 7.72 × 10−13 |
Med | −2.464 | 6.55 × 10−15 | Med-low | −0.6903 | 0.000129 |
Med-high | −2.973 | <2 × 10−16 | Low | −0.466 | 0.0114 |
High | −3.864 | <2 × 10−16 | Low-open | −0.231 | 0.221 |
90° Camera Angle | 45° Camera Angle | ||||
---|---|---|---|---|---|
Estimate | p-Value | Estimate | p-Value | ||
(Intercept) | 1.0809 | 8.53 × 10−9 | (Intercept) | 0.378 | 0.0230 |
Canopy density | Canopy density | ||||
Open-low | −0.813 | 0.00114 | High | −2.914 | <2 × 10−6 |
Low | −1.161 | 3.10 × 10−6 | High-med | −1.225 | 4.97 × 10−7 |
Low-med | −1.685 | 3.14 × 10−11 | Med | −0.485 | 0.0377 |
Med | −2.426 | <2 × 10−16 | Med-low | −0.271 | 0.245 |
Med-high | −3.0117 | <2 × 10−16 | Low | −0.137 | 0.559 |
High | −6.0849 | 2.49 × 10−9 | Low-open | −0.244 | 0.295 |
Appendix D. False Positives in Manual Analysis
Appendix E. Model Selection for Automated Analysis
Df | LogLik | AICc | Delta | Weight | |
---|---|---|---|---|---|
Camera angle + canopy density | 11 | −2796.136 | 5614.3 | 0.00 | 0.338 |
Camera angle + canopy density + stationary/walking | 11 | −2796.136 | 5614.3 | 0.00 | 0.338 |
Camera angle + canopy density + time of day | 12 | −2796.090 | 5616.2 | 1.92 | 0.130 |
Camera angle + canopy density + stationary/walking + time of day | 12 | −2796.090 | 5616.2 | 1.92 | 0.130 |
Df | LogLik | AICc | Delta | Weight | |
---|---|---|---|---|---|
Canopy density | 10 | −823.393 | 1666.9 | 0.00 | 0.348 |
Canopy density + stationary/walking | 10 | −823.393 | 1666.9 | 0.00 | 0.348 |
Canopy density + camera angle | 11 | −823.213 | 1668.6 | 1.66 | 0.152 |
Canopy density + stationary/walking + camera angle | 11 | −823.213 | 1668.6 | 1.66 | 0.152 |
Appendix F. False Positives in Automated Analysis
Appendix G. Comparison between Thermal and RGB Images with an Oblique Camera Angle
References
- Morton, O.; Scheffers, B.R.; Haugaasen, T.; Edwards, D.P. Impacts of wildlife trade on terrestrial biodiversity. Nat. Ecol. Evol. 2021, 5, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, C.S.; Mammola, S.; Cardoso, P. Global wildlife trade permeates the Tree of Life. Biol. Conserv. 2020, 247, 108503. [Google Scholar] [CrossRef]
- Bondi, E.; Fang, F.; Hamilton, M.; Kar, D.; Dmello, D.; Choi, J.; Hannaford, R.; Iyer, A.; Joppa, L.; Tambe, M. Spot poachers in action: Augmenting conservation drones with automatic detection in near real time. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Cooney, R.; Roe, D.; Dublin, H.; Phelps, J.; Wilkie, D.; Keane, A.; Travers, H.; Skinner, D.; Challender, D.W.; Allan, J.R. From poachers to protectors: Engaging local communities in solutions to illegal wildlife trade. Conserv. Lett. 2017, 10, 367–374. [Google Scholar] [CrossRef]
- Herbig, F.; Minnaar, A. Pachyderm poaching in Africa: Interpreting emerging trends and transitions. Crime Law Soc. Chang. 2019, 71, 67–82. [Google Scholar] [CrossRef]
- Eikelboom, J.A.; Nuijten, R.J.; Wang, Y.X.; Schroder, B.; Heitkönig, I.M.; Mooij, W.M.; van Langevelde, F.; Prins, H.H. Will legal international rhino horn trade save wild rhino populations? Glob. Ecol. Conserv. 2020, 23, e01145. [Google Scholar] [CrossRef]
- Goodyer, J. Drone rangers [Africa special sustainability]. Eng. Technol. 2013, 8, 60–61. [Google Scholar] [CrossRef]
- Rubino, E.C.; Pienaar, E.F. Rhinoceros ownership and attitudes towards legalization of global horn trade within South Africa’s private wildlife sector. Oryx 2020, 54, 244–251. [Google Scholar] [CrossRef]
- Cheteni, P. An analysis of anti-poaching techniques in Africa: A case of rhino poaching. Environ. Econ. 2014, 5, 63–70. [Google Scholar]
- Challender, D.W.; Macmillan, D.C. Poaching is more than an enforcement problem. Conserv. Lett. 2014, 7, 484–494. [Google Scholar] [CrossRef]
- Olivares-Mendez, M.A.; Fu, C.; Ludvig, P.; Bissyandé, T.F.; Kannan, S.; Zurad, M.; Annaiyan, A.; Voos, H.; Campoy, P. Towards an autonomous vision-based unmanned aerial system against wildlife poachers. Sensors 2015, 15, 31362–31391. [Google Scholar] [CrossRef]
- Patterson, C.; Koski, W.; Pace, P.; McLuckie, B.; Bird, D.M. Evaluation of an unmanned aircraft system for detecting surrogate caribou targets in Labrador. J. Unmanned Veh. Syst. 2015, 4, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Wich, S.A.; Koh, L.P. Conservation Drones: Mapping and Monitoring Biodiversity; Oxford University Press: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Hodgson, J.C.; Baylis, S.M.; Mott, R.; Herrod, A.; Clarke, R.H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Koh, L.P.; Wich, S.A. Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 2012, 5, 121–132. [Google Scholar] [CrossRef] [Green Version]
- van Gemert, J.C.; Verschoor, C.R.; Mettes, P.; Epema, K.; Koh, L.P.; Wich, S. Nature conservation drones for automatic localization and counting of animals. European Conference on Computer Vision. In European Conference on Computer Vision, Proceedings of the Computer Vision—ECCV 2014 Workshops, Zurich, Switzerland, 6–7, 12 September 2014; Springer: Cham, Switzerland, 2014; Volume 255–270. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, C.; Lejeune, P.; Lisein, J.; Sawadogo, P.; Bouché, P. Unmanned aerial survey of elephants. PLoS ONE 2013, 8, e54700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koen, H.; De Villiers, J.P.; Roodt, H.; De Waal, A. An expert-driven causal model of the rhino poaching problem. Ecol. Modell. 2017, 347, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Kays, R.; Sheppard, J.; Mclean, K.; Welch, C.; Paunescu, C.; Wang, V.; Kravit, G.; Crofoot, M. Hot monkey, cold reality: Surveying rainforest canopy mammals using drone-mounted thermal infrared sensors. Int. J. Remote Sens. 2019, 40, 407–419. [Google Scholar] [CrossRef]
- Spaan, D.; Burke, C.; McAree, O.; Aureli, F.; Rangel-Rivera, C.E.; Hutschenreiter, A.; Longmore, S.N.; McWhirter, P.R.; Wich, S.A. Thermal infrared imaging from drones offers a major advance for spider monkey surveys. Drones 2019, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Chrétien, L.P.; Théau, J.; Ménard, P. Visible and thermal infrared remote sensing for the detection of white-tailed deer using an unmanned aerial system. Wildl. Soc. Bull. 2016, 40, 181–191. [Google Scholar] [CrossRef]
- Mulero-Pázmány, M.; Stolper, R.; Van Essen, L.; Negro, J.J.; Sassen, T. Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Penny, S.G.; White, R.L.; Scott, D.M.; Mactavish, L.; Pernetta, A.P. Using drones and sirens to elicit avoidance behaviour in white rhinoceros as an anti-poaching tactic. Proc. R. Soc. B 2019, 286, 20191135. [Google Scholar] [CrossRef] [Green Version]
- Hambrecht, L.; Brown, R.P.; Piel, A.K.; Wich, S.A. Detecting ‘poachers’ with drones: Factors influencing the probability of detection with TIR and RGB imaging in miombo woodlands, Tanzania. Biol. Conserv. 2019, 233, 109–117. [Google Scholar] [CrossRef]
- Perroy, R.L.; Sullivan, T.; Stephenson, N. Assessing the impacts of canopy openness and flight parameters on detecting a sub-canopy tropical invasive plant using a small unmanned aerial system. ISPRS J. Hotogramm. Remote Sens. 2017, 125, 174–183. [Google Scholar] [CrossRef]
- Witczuk, J.; Pagacz, S.; Zmarz, A.; Cypel, M. Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests-preliminary results. Int. J. Remote Sens. 2018, 39, 5504–5521. [Google Scholar] [CrossRef]
- Lamba, A.; Cassey, P.; Segaran, R.R.; Koh, L.P. Deep learning for environmental conservation. Curr. Biol. 2019, 29, R977–R982. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elrahman, A.; Pearlstine, L.; Percival, F. Development of pattern recognition algorithm for automatic bird detection from unmanned aerial vehicle imagery. Surv. Land Inf. Sci. 2005, 65, 37. [Google Scholar]
- Longmore, S.; Collins, R.; Pfeifer, S.; Fox, S.; Mulero-Pázmány, M.; Bezombes, F.; Goodwin, A.; De Juan Ovelar, M.; Knapen, J.; Wich, S. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems. Int. J. Remote Sens. 2017, 38, 2623–2638. [Google Scholar] [CrossRef]
- Wijaya, A. Application of Multi-Stage Classification to Detect Illegal Logging with the Use of Multi-source Data; International Institute for Geo-Information Science and Earth Observation: Enschede, The Netherlands, 2005. [Google Scholar]
- Burke, C.; Rashman, M.F.; McAree, O.; Hambrecht, L.; Longmore, S.N.; Piel, A.K.; Wich, S.A. Addressing environmental and atmospheric challenges for capturing high-precision thermal infrared data in the field of astro-ecology. High. Energy Opt. Infrared Detectors Astron. VIII 2018, 10709. [Google Scholar] [CrossRef] [Green Version]
- Burke, C.; Rashman, M.; Wich, S.; Symons, A.; Theron, C.; Longmore, S. Optimizing observing strategies for monitoring animals using drone-mounted thermal infrared cameras. Int. J. Remote Sens. 2019, 40, 439–467. [Google Scholar] [CrossRef] [Green Version]
- Seymour, A.; Dale, J.; Hammill, M.; Halpin, P.; Johnston, D. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bonnin, N.; Van Andel, A.C.; Kerby, J.T.; Piel, A.K.; Pintea, L.; Wich, S.A. Assessment of chimpanzee nest detectability in drone-acquired images. Drones 2018, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Piel, A.K.; Strampelli, P.; Greathead, E.; Hernandez-Aguilar, R.A.; Moore, J.; Stewart, F.A. The diet of open-habitat chimpanzees (Pan troglodytes schweinfurthii) in the Issa valley, western Tanzania. J. Hum. Evol. 2017, 112, 57–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalmers, C.; Fergus, P.; Wich, S.; Montanez, A.C. Conservation AI: Live Stream Analysis for the Detection of Endangered Species Using Convolutional Neural Networks and Drone Technology. arXiv 2019, arXiv:1910.07360. [Google Scholar]
- Chalmers, C.; Fergus, P.; Curbelo Montanez, C.; Longmore, S.N.; Wich, S. Video Analysis for the Detection of Animals Using Convolutional Neural Networks and Consumer-Grade Drones. J. Unmanned Veh. Syst. 2021, 9, 112–127. [Google Scholar] [CrossRef]
- Barton, K.; Barton, M.K. Package ‘MuMIn’. Version 2019, 1, 18. [Google Scholar]
- Marschner, I.; Donoghoe, M.W.; Donoghoe, M.M.W. Package ‘glm2’. Journal 2018, 3, 12–15. [Google Scholar]
- Maindonald, J.; Braun, J. Data Analysis and Graphics Using R: An Example-based Approach, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Manning, C. Logistic Regression (with R); University Press: Stanford, CA, USA, 2007. [Google Scholar]
- Wright, R.E. Logistic Regression; The American Psychological Association: Wellesley, MA, USA, 1995. [Google Scholar]
- Grueber, C.; Nakagawa, S.; Laws, R.; Jamieson, I. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 2011, 24, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Wagenmakers, E.-J.; Farrell, S. AIC model selection using Akaike weights. Psychonomic Bull. Rev. 2004, 11, 192–196. [Google Scholar] [CrossRef]
- Peng, C.-Y.J.; Lee, K.L.; Ingersoll, G.M. An introduction to logistic regression analysis and reporting. J. Educational Res. 2002, 96, 3–14. [Google Scholar] [CrossRef]
- Linchant, J.; Lisein, J.; Semeki, J.; Lejeune, P.; Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal. Rev. 2015, 45, 239–252. [Google Scholar] [CrossRef]
- Rodríguez-Canosa, G.R.; Thomas, S.; Del Cerro, J.; Barrientos, A.; Macdonald, B. A real-time method to detect and track moving objects (DATMO) from unmanned aerial vehicles (UAVs) using a single camera. Remote Sens. 2012, 4, 1090–1111. [Google Scholar] [CrossRef] [Green Version]
- Jędrasiak, K.; Nawrat, A. The comparison of capabilities of low light camera, thermal imaging camera and depth map camera for night-time surveillance applications. Adv. Technol. Intell. Syst. Natl. Border Secur. 2013, 117–128. [Google Scholar] [CrossRef]
- De Oliveira, D.C.; Wehrmeister, M.A. Using deep learning and low-cost RGB and thermal cameras to detect pedestrians in aerial images captured by multirotor UAV. Sensors 2018, 18, 2244. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Jiang, M.; Yao, Y.; Zhang, L.; Lin, J. Use of UAV oblique imaging for the detection of individual trees in residential environments. Urban For. Urban Green. 2015, 14, 404–412. [Google Scholar] [CrossRef]
- Gates, D.M. Leaf temperature and transpiration 1. Agron. J. 1964, 56, 273–277. [Google Scholar] [CrossRef]
- Gooday, O.J.; Key, N.; Goldstien, S.; Zawar-Reza, P. An assessment of thermal-image acquisition with an unmanned aerial vehicle (UAV) for direct counts of coastal marine mammals ashore. J. Unmanned Veh. Syst. 2018, 6, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Schlossberg, S.; Chase, M.J.; Griffin, C.R. Testing the accuracy of aerial surveys for large mammals: An experiment with African savanna elephants (Loxodonta africana). PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Klein, D.J.; Mckown, M.W.; Tershy, B.R. Deep learning for large scale biodiversity monitoring. In Proceedings of the Bloomberg Data for Good Exchange Conference, Bloomberg Global Headquarters, New York, NY, USA, 28 May 2015. [Google Scholar]
- Swanson, A.; Kosmala, M.; Lintott, C.; Simpson, R.; Smith, A.; Packer, C. Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Sci. Data 2015, 2, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norouzzadeh, M.S.; Nguyen, A.; Kosmala, M.; Swanson, A.; Palmer, M.S.; Packer, C.; Clune, J. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. USA 2018, 115, E5716–E5725. [Google Scholar] [CrossRef] [Green Version]
- Pimm, S.L.; Alibhai, S.; Bergl, R.; Dehgan, A.; Giri, C.; Jewell, Z.; Joppa, L.; Kays, R.; Loarie, S. Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 2015, 30, 685–696. [Google Scholar] [CrossRef]
- Bondi, E.; Kapoor, A.; Dey, D.; Piavis, J.; Shah, S.; Hannaford, R.; Iyer, A.; Joppa, L.; Tambe, M. Near Real-Time Detection of Poachers from Drones in AirSim. IJCAI 2018, 5814–5816. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-Cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guirado, E.; Tabik, S.; Alcaraz-Segura, D.; Cabello, J.; Herrera, F. Deep-learning versus OBIA for scattered shrub detection with Google earth imagery: Ziziphus Lotus as case study. Remote Sens. 2017, 9, 1220. [Google Scholar] [CrossRef] [Green Version]
- Caughley, G. Sampling in aerial survey. J. Wildl. Manag. 1977, 605–615. [Google Scholar] [CrossRef]
- Kirkman, S.P.; Yemane, D.; Oosthuizen, W.; Meÿer, M.; Kotze, P.; Skrypzeck, H.; Vaz Velho, F.; Underhill, L. Spatio-temporal shifts of the dynamic Cape fur seal population in southern Africa, based on aerial censuses (1972–2009). Mar. Mammal Sci. 2013, 29, 497–524. [Google Scholar] [CrossRef]
- Patton, F. Are Drones the Answer to the Conservationists’ Prayers? Swara, Nairobi, July–September 2013. Available online: rhinoresourcecenter.com (accessed on 30 July 2020).
- Watts, A.C.; Perry, J.H.; Smith, S.E.; Burgess, M.A.; Wilkinson, B.E.; Szantoi, Z.; Ifju, P.G.; Percival, H.F. Small unmanned aircraft systems for low-altitude aerial surveys. J. Wildl. Manag. 2010, 74, 1614–1619. [Google Scholar] [CrossRef]
- Markowitz, E.M.; Nisbet, M.C.; Danylchuk, A.J.; Engelbourg, S.I. What’s That Buzzing Noise? Public Opinion on the Use of Drones for Conservation Science. Bioscience 2017, 67, 382–385. [Google Scholar] [CrossRef] [Green Version]
- Christie, K.S.; Gilbert, S.L.; Brown, C.L.; Hatfield, M.; Hanson, L. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Front. Ecol. Environ. 2016, 14, 241–251. [Google Scholar] [CrossRef]
- Paneque-Gálvez, J.; McCall, M.K.; Napoletano, B.M.; Wich, S.A.; Koh, L.P. Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests 2014, 5, 1481–1507. [Google Scholar] [CrossRef] [Green Version]
- Sandbrook, C. The social implications of using drones for biodiversity conservation. Ambio 2015, 44, 636–647. [Google Scholar] [CrossRef] [Green Version]
- Park, N.; Serra, E.; Subrahmanian, V. Saving rhinos with predictive analytics. IEEE Intell. Syst. 2015, 30, 86–88. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar] [CrossRef] [Green Version]
- Miljković, D. Methods for attenuation of unmanned aerial vehicle noise. 41st International Convention on Information and Communication Technology. Electron. Microelectron (MIPRO) 2018, 0914–0919. [Google Scholar] [CrossRef]
- Schiffman, R. Drones flying high as new tool for field biologists. Am. Assoc. Adv. Sci. 2014, 344, 459. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, M.J.; Bishop, J.A. Predicting and preventing elephant poaching incidents through statistical analysis, Gis-based risk analysis, and aerial surveillance flight path modeling. Trop. Conserv. Sci. 2016, 9, 525–548. [Google Scholar] [CrossRef] [Green Version]
No. | Variable | Variable Type | No. of Factors | Description |
---|---|---|---|---|
Response variable | ||||
0 | Detected | Binary | 2 | Detected = 1, not detected = 0 |
Predictor variables | ||||
1 | Time of day | Nominal | 2 | Dawn = 1, dusk = 3 |
2 | Camera angle | Binary | 2 | 90° = 1, 45° = 0 |
3 | Walking/stationary | Binary | 2 | Walking = 1, stationary = 0 |
4 | Canopy density | Nominal | 10 | Canopy density class, e.g., open, low, med-low, open-low, etc. |
Estimate | 95% Confidence Intervals | p-Value | |
---|---|---|---|
(Intercept) | 2.0822 | 1.828, 2.349 | <2 × 10−16 |
Time of day (dusk) | −0.292 | −0.422, −0.163 | 9.65 × 10−6 |
Camera angle (90°) | 0.383 | 0.209, 0.558 | 0.00016 |
Canopy density (low) | −0.837 | −1.141, −0.542 | 4.09 × 10−8 |
Canopy density (med) | −1.576 | −1.865, −1.295 | <2 × 10−16 |
Canopy density (high) | −2.448 | −2.738, −2.169 | <2 × 10−16 |
Canopy density (open to low) | −0.496 | −0.892, −0.0941 | 0.0145 |
Canopy density (low to med) | −1.145 | −1.504, −0.788 | 3.48 × 10−10 |
Canopy density (med to high) | −1.959 | −2.299, −1.627 | <2 × 10−16 |
Canopy density (high to med) | −1.867 | −2.198, −1.544 | <2 × 10−16 |
Canopy density (med to low) | −1.125 | −1.466, −0.789 | 6.73 × 10−11 |
Canopy density (low to open) | −0.665 | −1.0213, −0.308 | 0.000253 |
Estimate | 95% Confidence Intervals | p-Value | |
---|---|---|---|
(Intercept) | 0.891 | 0.615, 1.175 | 4.13 × 10−10 |
Camera angle (90°) | −0.356 | −0.622, 0.0906 | 0.00868 |
Canopy density (low) | −0.633 | −0.967, −0.303 | 0.000185 |
Canopy density (med) | −1.382 | −1.726, −1.044 | 1.84 × 10−15 |
Canopy density (high) | −3.906 | −4.582, −3.319 | <2 × 10−16 |
Canopy density (open to low) | −0.268 | −0.689, 0.155 | 0.214 |
Canopy density (low to med) | −1.140 | −1.567, −0.713 | 2.20 × 10−7 |
Canopy density (med to high) | −2.467 | −3.044, −1.934 | <2 × 10−16 |
Canopy density (high to med) | −1.739 | −2.193, −1.297 | 2.58 × 10−14 |
Canopy density (med to low) | −0.785 | −1.212, −0.360 | 0.000299b |
Canopy density (low to open) | −0.758 | −1.185, −0.333 | 0.000481 |
Estimate | 95% Confidence Intervals | p-Value | |
---|---|---|---|
(Intercept) | 1.564 | 1.359, 1.777 | <2 × 10−16 |
Camera angle (90°) | 0.234 | 0.0648, 0.403 | 0.0068 |
Canopy density (low) | 0.0303 | −0.248, 0.309 | 0.831 |
Canopy density (med) | −0.929 | −1.1801, −0.682 | 2.59 × 10−13 |
Canopy density (high) | −1.514 | −1.761, −1.272 | <2 × 10−16 |
Canopy density (open to low) | 0.0418 | −0.328, 0.423 | 0.827 |
Canopy density (low to med) | −0.429 | −0.767, −0.0861 | 0.0135 |
Canopy density (med to high) | −1.185 | −1.496, −0.875 | 6.66 × 10−14 |
Canopy density (high to med) | −1.074 | −1.376, −0.775 | 2.41 × 10−12 |
Canopy density (med to low) | −0.562 | −0.877, −0.245 | 0.000482 |
Canopy density (low to open) | −0.379 | −0.702, −0.0539 | 0.0216 |
Estimate | 95% Confidence Intervals | p-Value | |
---|---|---|---|
(Intercept) | −1.516 | −1.821, −1.230 | <2 × 10−16 |
Canopy density (low) | −0.271 | −0.712, 0.164 | 0.223 |
Canopy density (med) | −0.271 | −0.712, 0.164 | 0.223 |
Canopy density (high) | −1.177 | −1.750, −0.644 | 2.72 × 10−5 |
Canopy density (open to low) | 0.130 | −0.375, 0.621 | 0.608 |
Canopy density (low to med) | −0.0931 | −0.627, 0.418 | 0.726 |
Canopy density (med to high) | −0.609 | −1.233, −0.0337 | 0.0453 |
Canopy density (high to med) | −0.839 | −1.518, −0.227 | 0.0103 |
Canopy density (med to low) | −0.192 | −0.740, 0.3296 | 0.479 |
Canopy density (low to open) | −0.245 | −0.801, 0.283 | 0.374 |
Rock Density | No. of False Positives | Total Number of Detections | Percentage of False Positives (%) |
---|---|---|---|
Low | 178 | 1578 | 11.28 |
Medium | 429 | 1498 | 28.64 |
High | 659 | 1152 | 57.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doull, K.E.; Chalmers, C.; Fergus, P.; Longmore, S.; Piel, A.K.; Wich, S.A. An Evaluation of the Factors Affecting ‘Poacher’ Detection with Drones and the Efficacy of Machine-Learning for Detection. Sensors 2021, 21, 4074. https://doi.org/10.3390/s21124074
Doull KE, Chalmers C, Fergus P, Longmore S, Piel AK, Wich SA. An Evaluation of the Factors Affecting ‘Poacher’ Detection with Drones and the Efficacy of Machine-Learning for Detection. Sensors. 2021; 21(12):4074. https://doi.org/10.3390/s21124074
Chicago/Turabian StyleDoull, Katie E., Carl Chalmers, Paul Fergus, Steve Longmore, Alex K. Piel, and Serge A. Wich. 2021. "An Evaluation of the Factors Affecting ‘Poacher’ Detection with Drones and the Efficacy of Machine-Learning for Detection" Sensors 21, no. 12: 4074. https://doi.org/10.3390/s21124074
APA StyleDoull, K. E., Chalmers, C., Fergus, P., Longmore, S., Piel, A. K., & Wich, S. A. (2021). An Evaluation of the Factors Affecting ‘Poacher’ Detection with Drones and the Efficacy of Machine-Learning for Detection. Sensors, 21(12), 4074. https://doi.org/10.3390/s21124074