Self-Perception of the Knee Is Associated with Joint Motion during the Loading Response in Individuals with Knee Osteoarthritis: A Pilot Cross-Sectional Study
<p>Attachment position of inertial measurement units.</p> "> Figure 2
<p>Example of time series data of the knee flexion angle in one gait cycle of a subject. Black dots indicate the values extracted for calculation of knee flexion excursion in loading response. Knee flexion excursion in the loading response was calculated from the amplitude of displacement between the peak extension angle at the initial contact and peak flexion angle in the loading response.</p> "> Figure 3
<p>The relationship between the knee flexion excursion in loading response at fast speed and the Fremantle Knee Awareness Questionnaire (FreKAQ) score. High FreKAQ score indicates less knee awareness.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Evaluation
2.3. Range of Motion (RoM)
2.4. Muscle Strength
2.5. Gait Measurement
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshimura, N.; Muraki, S.; Oka, H.; Mabuchi, A.; En-Yo, Y.; Yoshida, M.; Saika, A.; Yoshida, H.; Suzuki, T.; Yamamoto, S.; et al. Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: The research on osteoarthritis/osteoporosis against disability study. J. Bone Miner. Metab. 2009, 27, 620–628. [Google Scholar] [CrossRef]
- Vassao, P.G.; Silva, B.A.; de Souza, M.C.; Parisi, J.R.; de Camargo, M.R.; Renno, A.C.M. Level of pain, muscle strength and posture: Effects of PBM on an exercise program in women with knee osteoarthritis—A randomized controlled trial. Lasers Med. Sci. 2020, 35, 1967–1974. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.L.; Hinman, R.S.; Metcalf, B.R. Association of sensorimotor function with knee joint kinematics during locomotion in knee osteoarthritis. Am. J. Phys. Med. Rehabil. 2004, 83, 455–463. [Google Scholar] [CrossRef]
- Kwon, S.B.; Ro, D.H.; Song, M.K.; Han, H.S.; Lee, M.C.; Kim, H.C. Identifying key gait features associated with the radiological grade of knee osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1755–1760. [Google Scholar] [CrossRef] [PubMed]
- Knoop, J.; Steultjens, M.P.; van der Leeden, M.; van der Esch, M.; Thorstensson, C.A.; Roorda, L.D.; Lems, W.F.; Dekker, J. Proprioception in knee osteoarthritis: A narrative review. Osteoarthr. Cartil. 2011, 19, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.O.; King, J.J.; Hing, C.B. The effectiveness of proprioceptive-based exercise for osteoarthritis of the knee: A systematic review and meta-analysis. Rheumatol. Int. 2012, 32, 3339–3351. [Google Scholar] [CrossRef]
- Viceconti, A.; Camerone, E.M.; Luzzi, D.; Pentassuglia, D.; Pardini, M.; Ristori, D.; Rossettini, G.; Gallace, A.; Longo, M.R.; Testa, M. Explicit and Implicit Own’s Body and Space Perception in Painful Musculoskeletal Disorders and Rheumatic Diseases: A Systematic Scoping Review. Front. Hum. Neurosci. 2020, 14, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanahan, C.J.; Hodges, P.W.; Wrigley, T.V.; Bennell, K.L.; Farrell, M.J. Organisation of the motor cortex differs between people with and without knee osteoarthritis. Arthritis Res. Ther. 2015, 17, 164. [Google Scholar] [CrossRef] [Green Version]
- Stanton, T.R.; Lin, C.W.C.; Smeets, R.J.E.M.; Taylor, D.; Law, R.; Lorimer Moseley, G. Spatially defined disruption of motor imagery performance in people with osteoarthritis. Rheumatology 2012, 51, 1455–1464. [Google Scholar] [CrossRef] [Green Version]
- Takakusaki, K. Functional Neuroanatomy for Posture and Gait Control. J. Mov. Disord. 2017, 10, 1–17. [Google Scholar] [CrossRef]
- Nishigami, T.; Tanaka, S.; Mibu, A.; Imai, R.; Wand, B.M. Knee-related disability was largely influenced by cognitive factors and disturbed body perception in knee osteoarthritis. Sci. Rep. 2021, 11, 5835. [Google Scholar] [CrossRef] [PubMed]
- Kawaji, H.; Kojima, S. Effect of altered sagittal-plane knee kinematics on loading during the early stance phase of gait. Gait Posture 2019, 74, 108–113. [Google Scholar] [CrossRef]
- Favre, J.; Erhart-Hledik, J.C.; Andriacchi, T.P. Age-related differences in sagittal-plane knee function at heel-strike of walking are increased in osteoarthritic patients. Osteoarthr. Cartil. 2014, 22, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.L.; Allan, R.; Marreiros, S.P.; Woodburn, J.; Steultjens, M.P.M. Muscle co-activation across activities of daily living in individuals with knee osteoarthritis. Arthritis Care Res. 2019, 71, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Trepczynski, A.; Kutzner, I.; Schwachmeyer, V.; Heller, M.O.; Pfitzner, T.; Duda, G.N. Impact of antagonistic muscle co-contraction on in vivo knee contact forces. J. Neuroeng. Rehabil. 2018, 15, 101. [Google Scholar] [CrossRef] [PubMed]
- Andriacchi, T.P.; Mündermann, A.; Smith, R.L.; Alexander, E.J.; Dyrby, C.O.; Koo, S. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 2004, 32, 447–457. [Google Scholar] [CrossRef]
- Amiri, P.; Hubley-Kozey, C.L.; Landry, S.C.; Stanish, W.D.; Astephen Wilson, J.L. Obesity is associated with prolonged activity of the quadriceps and gastrocnemii during gait. J. Electromyogr. Kinesiol. 2015, 25, 951–958. [Google Scholar] [CrossRef]
- Landry, S.C.; McKean, K.A.; Hubley-Kozey, C.L.; Stanish, W.D.; Deluzio, K.J. Knee biomechanics of moderate OA patients measured during gait at a self-selected and fast walking speed. J. Biomech. 2007, 40, 1754–1761. [Google Scholar] [CrossRef] [PubMed]
- Glass, N.A.; Torner, J.C.; Frey Law, L.A.; Wang, K.; Yang, T.; Nevitt, M.C.; Felson, D.T.; Lewis, C.E.; Segal, N.A. The relationship between quadriceps muscle weakness and worsening of knee pain in the MOST cohort: A 5-year longitudinal study. Osteoarthr. Cartil. 2013, 21, 1154–1159. [Google Scholar] [CrossRef] [Green Version]
- Perry, J.; Burnfield, J.M. Gait Analysis: Normal and Pathological Function, 2nd ed.; SLACK Inc.: Thorofare, NJ, USA, 2010. [Google Scholar]
- Riskowski, J.L.; Mikesky, A.; Bahamonde, R.E.; Alvey, T., III; Burr, D.B. Proprioception, gait kinematics, and rate of loading during walking: Are they related? J. Musculoskelet. Neuronal Interact. 2005, 5, 379–387. [Google Scholar]
- Riemann, B.L.; Lephart, S.M. The Sensorimotor System, Part II: The Role of Proprioception in Motor Control and Functional Joint Stability. J. Athl. Train. 2002, 37, 80–84. [Google Scholar] [PubMed]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishigami, T.; Mibu, A.; Tanaka, K.; Yamashita, Y.; Yamada, E.; Wand, B.M.; Catley, M.J.; Stanton, T.R.; Moseley, G.L. Development and psychometric properties of knee-specific body-perception questionnaire in people with knee osteoarthritis: The Fremantle Knee Awareness Questionnaire. PLoS ONE 2017, 12, e0179225. [Google Scholar] [CrossRef] [PubMed]
- Wand, B.M.; Catley, M.J.; Rabey, M.I.; O’Sullivan, P.B.; O’Connell, N.E.; Smith, A.J. Disrupted Self-Perception in People with Chronic Low Back Pain. Further Evaluation of the Fremantle Back Awareness Questionnaire. J. Pain 2016, 17, 1001–1012. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y.; Olson, S.L.; Protas, E.J. Test-retest strength reliability: Hand-held dynamometry in community-dwelling elderly fallers. Arch. Phys. Med. Rehabil. 2002, 83, 811–815. [Google Scholar] [CrossRef]
- Maruyama, T.; Tada, M.; Toda, H. Riding motion capture system using inertial measurement units with contact constraints. Int. J. Autom. Technol. 2019, 13, 506–516. [Google Scholar] [CrossRef]
- Endo, Y.; Tada, M.; Mochimaru, M. Dhaiba: Development of virtual ergonomic assessment system with human models. In Proceedings of the 3rd International Digital Human Symposium, Tokyo, Japan, 20–22 May 2014. [Google Scholar]
- Maruyama, T.; Toda, H.; Kanoga, S.; Tada, M.; Endo, Y. Accuracy Evaluation of Human Gait Estimation by a Sparse Set of Inertial Measurement Units. Act. Behav. Comput. 2020, 51–61. [Google Scholar] [CrossRef]
- Andreopoulou, G.; Mahad, D.J.; Mercer, T.H.; Van Der Linden, M.L. Test-retest reliability and minimal detectable change of ankle kinematics and spatiotemporal parameters in MS population. Gait Posture 2019, 74, 218–222. [Google Scholar] [CrossRef]
- Henriksen, M.; Simonsen, E.B.; Alkjær, T.; Lund, H.; Graven-Nielsen, T.; Danneskiold-Samsøe, B.; Bliddal, H. Increased joint loads during walking—A consequence of pain relief in knee osteoarthritis. Knee 2006, 13, 445–450. [Google Scholar] [CrossRef]
- Rudolph, K.S.; Schmitt, L.C.; Lewek, M.D. Age-Related Changes in Strength, Joint Laxity, and Walking Patterns: Are They Related to Knee Osteoarthritis? Phys. Ther. 2007, 87, 1422–1432. [Google Scholar] [CrossRef] [Green Version]
- Kirtley, C.; Whittle, M.W.; Jefferson, R.J. Influence of walking speed on gait parameters. J. Biomed. Eng. 1985, 7, 282–288. [Google Scholar] [CrossRef]
- Proske, U.; Gandevia, S.C. The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 2012, 92, 1651–1697. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.S.; Kersten, P.; McCabe, C.S.; McPherson, K.M.; Blake, D.R. Body perception disturbance: A contribution to pain in complex regional pain syndrome (CRPS). Pain 2007, 133, 111–119. [Google Scholar] [CrossRef]
- Stanton, T.R.; Gilpin, H.R.; Edwards, L.; Moseley, G.L.; Newport, R. Illusory resizing of the painful knee is analgesic in symptomatic knee osteoarthritis. PeerJ 2018, 6, e5206. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Miyai, I.; Suzuki, M.; Kubota, K. Gait capacity affects cortical activation patterns related to speed control in the elderly. Exp. Brain Res. 2009, 193, 445–454. [Google Scholar] [CrossRef]
- Katayama, O.; Nishi, Y.; Osumi, M.; Takamura, Y.; Kodama, T.; Morioka, S. Neural activities behind the influence of sensorimotor incongruence on dysesthesia and motor control. Neurosci. Lett. 2019, 698, 19–26. [Google Scholar] [CrossRef]
- Lewek, M.; Rudolph, K.; Axe, M.; Snyder-Mackler, L. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin. Biomech. 2002, 17, 56–63. [Google Scholar] [CrossRef]
- Farrokhi, S.; O’Connell, M.; Fitzgerald, G.K. Altered gait biomechanics and increased knee-specific impairments in patients with coexisting tibiofemoral and patellofemoral osteoarthritis. Gait Posture 2015, 41, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.M.; Thomas, A.C.; Armstrong, C.W.; Pietrosimone, B.G.; Tevald, M.A. The associations between quadriceps muscle strength, power, and knee joint mechanics in knee osteoarthritis: A cross-sectional study. Clin. Biomech. 2015, 30, 1140–1145. [Google Scholar] [CrossRef]
- Devita, P.; Hortobágyi, T. Obesity is not associated with increased knee joint torque and power during level walking. J. Biomech. 2003, 36, 1355–1362. [Google Scholar] [CrossRef]
- Kerrigan, D.C.; Todd, M.K.; Croce, U.D. Gender differences in joint biomechanics during walking; Normative study in young adults. Am. J. Phys. Med. Rehabil. 1998, 77, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Frontera, W.R.; Hughes, V.A.; Lutz, K.J.; Evans, W.J. A cross-sectional study of muscle strength and mass in 45-to 78-yr-old men and women. J. Appl. Physiol. 1991, 71, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C.; Steyerberg, E.W. The number of subjects per variable required in linear regression analyses. J. Clin. Epidemiol. 2015, 68, 627–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item |
---|
|
|
|
|
|
|
|
|
|
Characteristics, n = 21 | |
---|---|
Age (years), mean (SD) | 72.1 (7.9) |
Sex, n (%) | |
Male | 4 (19.0%) |
Female | 17 (81.0%) |
Height (m), mean (SD) | 1.54 (0.94) |
Body weight (kg), mean (SD) | 59.5 (9.2) |
BMI 1 (kg/m2), mean (SD) | 24. 9 (3.4) |
K-L grade 2, n (%) | |
Grade I | 2 (9.5%) |
Grade II | 7 (33.3%) |
Grade III | 7 (33.3%) |
Grade IV | 5 (23.8%) |
VAS 3 walking (mm), mean (SD) | 35.4 (33.7) |
Muscle strength (Nm/kg), mean (SD) | 1.06 (0.28) |
FreKAQ 4, mean (SD) | 12. 0 (8.1) |
Comfortable | Fast | MDC 1 | p-Value | |
---|---|---|---|---|
Walking speed (m/s), mean (SEM) | 1.23 (0.05) | 1.51 (0.07) | 0.15 | 0.0001 |
Stride length (m), mean (SEM) | 1.15 (0.02) | 1.25 (0.02) | 0.05 | <0.0001 |
Knee flexion excursion (deg), mean (SEM) | 12.1 (1.34) | 14.8 (1.46) | 3.73 | 0.0002 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1. Age | ||||||||
2. K−L grade 1 | 0.171 | |||||||
3. VAS 2 walking | 0.142 | 0.349 | ||||||
4. Muscle stregth | −0.164 | −0.370 | −0.125 | |||||
5. FreKAQ 3 | 0.237 | 0.350 | 0.467 * | −0.469 * | ||||
6. Walking speed (Comfortable) | 0.290 | −0.205 | −0.181 | 0.186 | −0.182 | |||
7. Knee flexion excursion (Comfortable) | 0.244 | −0.463 * | −0.230 | 0.236 | −0.361 | 0.191 | ||
8. Walking speed (Fast) | −0.163 | −0.306 | −0.301 | 0.445 * | −0.432 | 0.710 * | 0.051 | |
9. Knee flexion excursion (Fast) | 0.063 | −0.461 * | −0.209 | 0.277 | −0.458 * | −0.017 | 0.915 * | 0.005 |
Condition | Independent Variable | R2 | ΔR2 | ΔF | p-Value | B | 95% CI 1 | β |
---|---|---|---|---|---|---|---|---|
Comfortable speed | Covariates | 0.457 | 0.457 | 3.371 | 0.035 | |||
+ Muscle strength | 0.475 | 0.018 | 0.502 | 0.489 | 3.209 | −6.443, 12.86 | 0.148 | |
+ FreKAQ 2 | 0.546 | 0.089 | 2.943 | 0.107 | −0.319 | −0.715, 0.077 | −0.421 | |
Fast speed | Covariates | 0.341 | 0.341 | 2.073 | 0.132 | |||
+ Muscle strength | 0.392 | 0.051 | 1.256 | 0.280 | 6.192 | −23.46, 10.757 | 0.261 | |
+ FreKAQ 2 | 0.559 | 0.218 | 7.384 * | 0.016 | −0.543 * | −0.969, −0.117 | −0.659 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toda, H.; Maruyama, T.; Fujita, K.; Yamauchi, Y.; Tada, M. Self-Perception of the Knee Is Associated with Joint Motion during the Loading Response in Individuals with Knee Osteoarthritis: A Pilot Cross-Sectional Study. Sensors 2021, 21, 4009. https://doi.org/10.3390/s21124009
Toda H, Maruyama T, Fujita K, Yamauchi Y, Tada M. Self-Perception of the Knee Is Associated with Joint Motion during the Loading Response in Individuals with Knee Osteoarthritis: A Pilot Cross-Sectional Study. Sensors. 2021; 21(12):4009. https://doi.org/10.3390/s21124009
Chicago/Turabian StyleToda, Haruki, Tsubasa Maruyama, Koji Fujita, Yuki Yamauchi, and Mitsunori Tada. 2021. "Self-Perception of the Knee Is Associated with Joint Motion during the Loading Response in Individuals with Knee Osteoarthritis: A Pilot Cross-Sectional Study" Sensors 21, no. 12: 4009. https://doi.org/10.3390/s21124009
APA StyleToda, H., Maruyama, T., Fujita, K., Yamauchi, Y., & Tada, M. (2021). Self-Perception of the Knee Is Associated with Joint Motion during the Loading Response in Individuals with Knee Osteoarthritis: A Pilot Cross-Sectional Study. Sensors, 21(12), 4009. https://doi.org/10.3390/s21124009