A Projector-Based Augmented Reality Navigation System for Computer-Assisted Surgery
<p>Overview of the system. The surgeon carries out puncture operation under navigation.</p> "> Figure 2
<p>AR guided workflow for the operation.</p> "> Figure 3
<p>Different coordinate systems involved in our system: the virtual objects were registered to the patient, and the patient was then aligned with the projector’s reference, which is also the base of the virtual environment. The surgical tool was aligned to the projector’s reference for display, and aligned to the patient to compute the deviation.</p> "> Figure 4
<p>The inverse camera pinhole model of projector for calibration.</p> "> Figure 5
<p>Gary code projection. (<b>a</b>) Source gray code patterns; (<b>b</b>) Project gray code and capture; (<b>c</b>) Captured projection; (<b>d</b>) Decoded captured images.</p> "> Figure 6
<p>Obtain the spatial position of the projection point.</p> "> Figure 7
<p>Calibrate the puncture needle. (<b>a</b>) Pivot the needle to find the offset of the tip; (<b>b</b>) Find the axis’ direction using the probe.</p> "> Figure 8
<p>The patient registration. (<b>a</b>) CT scan the patient together with sphere markers; (<b>b</b>) CT image registered with sphere markers.</p> "> Figure 9
<p>The augmented view for puncture. (<b>a</b>) Project the circles on the surface; (<b>b</b>) Align the needle’s tip to the center of the circle; (<b>c</b>) Adjust the direction of the needle to the circle turning yellow; (<b>d</b>) Start the puncture, and when the target turns green, it means that the needle has reached the lesion.</p> "> Figure 10
<p>Points projected onto the 3D-printed pyramid for projection accuracy validation. (<b>a</b>) The designed pyramid with points; (<b>b</b>) Points were projected to overlap the pyramid.</p> "> Figure 11
<p>The model for puncture. (<b>a</b>) The model is fixed with the marker, and is covered to ensure that the surgeon cannot see the internal lesion information from above; (<b>b</b>) The lesions are placed at different depths, and the side of the model is transparent to check whether the needle successfully reaches the lesion; (<b>c</b>) The puncture needle is fixed with the 3D-printed reference.</p> "> Figure 12
<p>Projection on the in vitro pig leg. (<b>a</b>) The original pig leg without projection; (<b>b</b>) The CT image indicating the internal bone; (<b>c</b>) Project the internal anatomy onto the pig leg.</p> "> Figure 13
<p>Schematic diagram of puncture experiment results. (<b>a</b>) The trajectories formed on the silicone after needle puncture, and these trajectories have successfully reached the lesion; (<b>b</b>) It can be clearly confirmed from the side that the needle has reached the lesion.</p> "> Figure 14
<p>Results of the qualitative analysis (➄ higher score means less dizziness; ➆ higher score means less burden).</p> ">
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. System Overview
3.2. Transformations among System Components
- : the transformation from projector to OTS.
- : the transformation from surgical tool to OTS.
- : the transformation from patient to OTS.
- : the transformation from surgical tool to patient.
- : the transformation from virtual objects to patient.
- : the transformation from patient to projector.
- : the transformation from surgical tool to projector.
3.3. Projector Calibration
3.3.1. Intrinsic Matrix Calculation
3.3.2. Extrinsic Matrix Calculation
3.4. Surgical Tool Calibration
3.5. Patient Registration
3.6. Interactive Display Design
4. Validation Experiments
4.1. Projection Accuracy Validation
4.2. Puncture Accuracy Validation
4.3. Visual Effect Evaluation
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filippou, V.; Tsoumpas, C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med. Phys. 2018, 45, e740–e760. [Google Scholar] [CrossRef] [PubMed]
- Leksell, L. A stereotaxic apparatus for intracerebral surgery. Acta Chir. Scand. 1960, 99, 229–233. [Google Scholar]
- Yavor, E. Neuronavigation: Geneology, reality, and prospects. Neurosurg. Focus 2009, 27, E11. [Google Scholar]
- Mavrogenis, A.F.; Savvidou, O.D.; Mimidis, G.; Papanastasiou, J.; Koulalis, D.; Demertzis, N.; Papagelopoulos, P.J. Computer-assisted navigation in orthopedic surgery. Orthopedics 2013, 36, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Nolte, L.P. Computer-assisted orthopedic surgery: Current state and future perspective. Front. Surg. 2015, 2, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, L.; Wu, J.Y.; DiMaio, S.P.; Navab, N.; Kazanzides, P. A review of augmented reality in robotic-assisted surgery. IEEE Trans. Med. Robot. Bionics 2019, 2, 1–16. [Google Scholar] [CrossRef]
- Azuma, R.T. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Lyu, M.R.; King, I.; Wong, T.T.; Yau, E.; Chan, P.W. ARCADE: Augmented Reality Computing Arena for Digital Entertainment. In Proceedings of the 2005 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2005; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lee, K. Augmented reality in education and training. TechTrends 2012, 56, 13–21. [Google Scholar] [CrossRef]
- Livingston, M.A.; Rosenblum, L.J.; Brown, D.G.; Schmidt, G.S.; Julier, S.J.; Baillot, Y.; Swan, J.E.; Ai, Z.; Maassel, P. Military applications of augmented reality. In Handbook of Augmented Reality; Springer: Berlin, Germany, 2011; pp. 671–706. [Google Scholar]
- Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Vilar-Montesinos, M. A fog computing and cloudlet based augmented reality system for the industry 4.0 shipyard. Sensors 2018, 18, 1798. [Google Scholar] [CrossRef] [Green Version]
- Condino, S.; Turini, G.; Parchi, P.D.; Viglialoro, R.M.; Piolanti, N.; Gesi, M.; Ferrari, M.; Ferrari, V. How to build a patient-specific hybrid simulator for Orthopaedic open surgery: Benefits and limits of mixed-reality using the Microsoft HoloLens. J. Healthc. Eng. 2018, 2018. [Google Scholar] [CrossRef]
- Brun, H.; Bugge, R.A.B.; Suther, L.; Birkeland, S.; Kumar, R.; Pelanis, E.; Elle, O.J. Mixed reality holograms for heart surgery planning: First user experience in congenital heart disease. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 883–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fida, B.; Cutolo, F.; di Franco, G.; Ferrari, M.; Ferrari, V. Augmented reality in open surgery. Updat. Surg. 2018, 70, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Bimber, O.; Raskar, R. Spatial Augmented Reality: Merging Real and Virtual Worlds; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Mischkowski, R.; Zinser, M.; Kübler, A.; Seifert, U.; Zöller, J. Clinical and experimental evaluation of an augmented reality system in cranio-maxillofacial surgery. Int. Congr. Ser. 2005, 1281, 565–570. [Google Scholar] [CrossRef]
- Wang, J.; Suenaga, H.; Hoshi, K.; Yang, L.; Kobayashi, E.; Sakuma, I.; Liao, H. Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery. IEEE Trans. Biomed. Eng. 2014, 61, 1295–1304. [Google Scholar] [CrossRef]
- Tardif, J.P.; Roy, S.; Meunier, J. Projector-based augmented reality in surgery without calibration. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), Cancun, Mexico, 17–21 September 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 1, pp. 548–551. [Google Scholar]
- Krempien, R.; Hoppe, H.; Kahrs, L.; Daeuber, S.; Schorr, O.; Eggers, G.; Bischof, M.; Munter, M.W.; Debus, J.; Harms, W. Projector-based augmented reality for intuitive intraoperative guidance in image-guided 3D interstitial brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 944–952. [Google Scholar] [CrossRef]
- Gavaghan, K.; Oliveira-Santos, T.; Peterhans, M.; Reyes, M.; Kim, H.; Anderegg, S.; Weber, S. Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: Phantom studies. Int. J. Comput. Assist. Radiol. Surg. 2012, 7, 547–556. [Google Scholar] [CrossRef]
- Wu, J.R.; Wang, M.L.; Liu, K.C.; Hu, M.H.; Lee, P.Y. Real-time advanced spinal surgery via visible patient model and augmented reality system. Comput. Methods Programs Biomed. 2014, 113, 869–881. [Google Scholar] [CrossRef]
- Laviole, J.; Hachet, M. Spatial augmented reality to enhance physical artistic creation. In Proceedings of the Adjunct 25th Annual ACM Symposium on User Interface Software and Technology; Association for Computing Machinery: New York, NY, USA, 2012; pp. 43–46. [Google Scholar]
- Benko, H.; Ofek, E.; Zheng, F.; Wilson, A.D. Fovear: Combining an optically see-through near-eye display with projector-based spatial augmented reality. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology; Association for Computing Machinery: New York, NY, USA, 2015; pp. 129–135. [Google Scholar]
- Hamasaki, T.; Itoh, Y.; Hiroi, Y.; Iwai, D.; Sugimoto, M. Hysar: Hybrid material rendering by an optical see-through head-mounted display with spatial augmented reality projection. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Punpongsanon, P.; Iwai, D.; Sato, K. Softar: Visually manipulating haptic softness perception in spatial augmented reality. IEEE Trans. Vis. Comput. Graph. 2015, 21, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Frank, G. Pulse Code Communication. U.S. Patent 2,632,058, 17 March 1953. [Google Scholar]
- Moreno, D.; Taubin, G. Simple, Accurate, and Robust Projector-Camera Calibration. In Proceedings of the 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization Transmission, Zurich, Switzerland, 13–15 October 2012; pp. 464–471. [Google Scholar] [CrossRef]
- Schmalz, C. Robust Single-Shot Structured Light 3D Scanning. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Bavaria, Germany, 2011. [Google Scholar]
- Salvi, J.; Pages, J.; Batlle, J. Pattern codification strategies in structured light systems. Pattern Recognit. 2004, 37, 827–849. [Google Scholar] [CrossRef] [Green Version]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Zitova, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef] [Green Version]
- Shuhaiber, J.H. Augmented reality in surgery. Arch. Surg. 2004, 139, 170–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bimber, O.; Raskar, R. Modern approaches to augmented reality. In ACM SIGGRAPH 2006 Courses; ACM: New York, NY, USA, 2006; pp. 1–es. [Google Scholar]
Projection | 1 | 2 | 3 | 4 | 5 | Total |
---|---|---|---|---|---|---|
Position error (mm) | 1.16 ± 0.55 | 0.97 ± 0.31 | 1.08 ± 0.43 | 1.04 ± 0.41 | 0.92 ± 0.39 | 1.03 ± 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zhao, Y.; Xie, L.; Zheng, G. A Projector-Based Augmented Reality Navigation System for Computer-Assisted Surgery. Sensors 2021, 21, 2931. https://doi.org/10.3390/s21092931
Gao Y, Zhao Y, Xie L, Zheng G. A Projector-Based Augmented Reality Navigation System for Computer-Assisted Surgery. Sensors. 2021; 21(9):2931. https://doi.org/10.3390/s21092931
Chicago/Turabian StyleGao, Yuan, Yuyun Zhao, Le Xie, and Guoyan Zheng. 2021. "A Projector-Based Augmented Reality Navigation System for Computer-Assisted Surgery" Sensors 21, no. 9: 2931. https://doi.org/10.3390/s21092931
APA StyleGao, Y., Zhao, Y., Xie, L., & Zheng, G. (2021). A Projector-Based Augmented Reality Navigation System for Computer-Assisted Surgery. Sensors, 21(9), 2931. https://doi.org/10.3390/s21092931