Thermionic Electron Beam Current and Accelerating Voltage Controller for Gas Ion Sources
<p>A simplified diagram of the control system electrical circuit. <span class="html-italic">V<sub>c</sub></span> is the cathode voltage, <span class="html-italic">I<sub>e</sub></span> is the emission current, <span class="html-italic">V<sub>a</sub></span> is the anode circuit supply voltage, <span class="html-italic">V</span> is the electron accelerating voltage. <span class="html-italic">R</span><sub>1</sub> = 12 kOhm; <span class="html-italic">R</span><sub>2</sub> = 2.4 kOhm; <span class="html-italic">R</span><sub>3</sub> = 10 kOhm; <span class="html-italic">R</span><sub>4</sub> = 120 kOhm; <span class="html-italic">R</span><sub>5</sub> = <span class="html-italic">R</span><sub>6</sub> = 570 Ohm. The operational amplifier A<sub>1</sub> and differential amplifier A<sub>3</sub> are supplied from the voltage source of +/−12 V/5 A, and the operational amplifier A<sub>2</sub> is supplied from the voltage source of 125 V/100 mA. All supplied voltage sources are referenced to the ground.</p> "> Figure 2
<p>A block diagram of the designed control system.</p> "> Figure 3
<p>The general algorithm of the presented control system.</p> "> Figure 4
<p>Results of the feedforward control of the electron accelerating voltage <span class="html-italic">V</span>.</p> "> Figure 5
<p>Plot of the emission current <span class="html-italic">I<sub>e</sub></span> versus the electron accelerating voltage <span class="html-italic">V</span>.</p> "> Figure 6
<p>Standard deviation of the emission current versus its intensity; the accelerating voltage <span class="html-italic">V</span> = 100 V.</p> "> Figure 7
<p>Percentage standard deviation of the emission current versus its intensity.</p> ">
Abstract
:1. Introduction
2. Design
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bull, J.N.; Lee, J.W.L.; Vallance, C. Absolute Electron Total Ionization Cross-Sections: Molecular Analogues of DNA and RNA Nucleobase and Sugar Constituents. Phys. Chem. Chem. Phys. 2014, 16, 10743–10752. [Google Scholar] [CrossRef]
- Märk, T.D.; Dunn, G.H. (Eds.) Electron Impact Ionization; Springer: Wien, Austria, 1985; ISBN 978-3-7091-4030-7. [Google Scholar]
- Zawadzki, M. Electron-Impact Ionization Cross Section of Formic Acid. Eur. Phys. J. D 2018, 72, 12. [Google Scholar] [CrossRef] [Green Version]
- Elkatmis, A.; Kangi, R. Remarks Concerning about the Characteristics of the Extractor Vacuum Gauge and the Quadrupole Mass Spectrometer. Measurement 2019, 131, 269–276. [Google Scholar] [CrossRef]
- Jousten, K.; Boineau, F.; Bundaleski, N.; Illgen, C.; Setina, J.; Teodoro, O.M.N.D.; Vicar, M.; Wüest, M. A Review on Hot Cathode Ionisation Gauges with Focus on a Suitable Design for Measurement Accuracy and Stability. Vacuum 2020, 179, 109545. [Google Scholar] [CrossRef]
- Tassetti, C.-M.; Mahieu, R.; Danel, J.-S.; Peyssonneaux, O.; Progent, F.; Polizzi, J.-P.; Machuron-Mandard, X.; Duraffourg, L. MEMS Electron Impact Ion Source Integrated in a Microtime-of-Flight Mass Spectrometer. Sens. Actuators B Chem. 2013, 189, 173–178. [Google Scholar] [CrossRef]
- Syms, R.R.A.; Wright, S. MEMS Mass Spectrometers: The next Wave of Miniaturization. J. Micromech. Microeng. 2016, 26, 023001. [Google Scholar] [CrossRef]
- Alessi, J.G.; Barton, D.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McNerney, A.; Mapes, M.; et al. The Brookhaven National Laboratory Electron Beam Ion Source for RHIC. Rev. Sci. Instrum. 2010, 81, 02A509. [Google Scholar] [CrossRef]
- Durakiewicz, T.; Sikora, J.; Halas, S. Work Function Variations of Incandescent Filaments during Self-Cooling in Vacuum. Vacuum 2006, 80, 894–898. [Google Scholar] [CrossRef]
- Mroczka, J. The Cognitive Process in Metrology. Measurement 2013, 46, 2896–2907. [Google Scholar] [CrossRef]
- Yinon, J.; Ganz, M. Trap Current Regulated Ion Source Power Supply for a Mass Spectrometer. Rev. Sci. Instrum. 1975, 46, 1707–1708. [Google Scholar] [CrossRef]
- Chapman, R. Versatile Wide Range Electron Current Regulator. Rev. Sci. Instrum. 1972, 43, 1536–1538. [Google Scholar] [CrossRef]
- Close, K.; Yarwood, J. A Precision Electron Emission Regulator. Vacuum 1972, 22, 45–46. [Google Scholar] [CrossRef]
- Shaw, S.-Y.; Lue, J.T. An Integrated Circuit Based Vacuum Ionisation Gauge Meter. J. Phys. E Sci. Instrum. 1980, 13, 1150–1153. [Google Scholar] [CrossRef]
- Watanabe, F.; Hiramatsu, S.; Ishimaru, H. A Modulated-Emission Pressure Gauge System. Vacuum 1984, 34, 673–674. [Google Scholar] [CrossRef]
- Halas, S.; Sikora, J. Electron Emission Stabiliser with Double Negative Feedback Loop. Meas. Sci. Technol. 1990, 1, 980–982. [Google Scholar] [CrossRef]
- Donkov, N.; Knapp, W. Control of Hot-Filament Ionization Gauge Emission Current: Mathematical Model and Model-Based Controller. Meas. Sci. Technol. 1997, 8, 798–803. [Google Scholar] [CrossRef]
- Sikora, J. Method of Enhancing the Repeatability of Mass Spectrometer Measurement Results. Metrol. Meas. Syst. 2003, 10, 101–116. [Google Scholar]
- Sikora, J. Dual Application of a Biasing System to an Electron Source with a Hot Cathode. Meas. Sci. Technol. 2003, 15, N10–N14. [Google Scholar] [CrossRef]
- Flaxer, E. Programmable Smart Electron Emission Controller for Hot Filament. Rev. Sci. Instrum. 2011, 82, 025111. [Google Scholar] [CrossRef] [PubMed]
- Kania, B.; Sikora, J. Thermionic emission controller with PID algorithm. In 2016 MIXDES, Proceedings of the 23rd International Conference “Mixed Design of Integrated Circuits and Systems”, Łódź, Poland, 23–15 June 2016; Napieralski, A., Ed.; Lodz University of Technology: Łódź, Poland, 2016; pp. 480–483. ISBN 978-1-5090-3099-6. [Google Scholar]
- Durakiewicz, T. Electron Emission Controller with Pulsed Heating of Filament. Int. J. Mass Spectrom. Ion. Process. 1996, 156, 31–40. [Google Scholar] [CrossRef]
- Herbert, B. A Circuit for Stabilizing the Electron Current to the Anode of a Hot-Filament Device. Vacuum 1976, 26, 363–369. [Google Scholar] [CrossRef]
- Hansen, D.C. Ionization Pressure Gauge with Bias Voltage and Emission Current Control and Measurement. U.S. Patent 9927317, 27 March 2018. [Google Scholar]
- Sikora, J.; Halas, S. A Novel Circuit for Independent Control of Electron Energy and Emission Current of a Hot Cathode Electron Source. Rapid Commun. Mass Spectrom. 2011, 25, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Kania, B.; Sikora, J. System Identification of a Hot Cathode Electron Source: Time Domain Approach. AIP Adv. 2018, 8, 105107. [Google Scholar] [CrossRef] [Green Version]
- Shida, J.; Wu, F.; Spieglan, E.; Çalışkan, M. Tungsten Thermionic Emission as a Gauge for Low Pressures of Cesium Vapor. Instruments 2020, 4, 34. [Google Scholar] [CrossRef]
Presented Control System | Previous Control System [21] | |
---|---|---|
Controller hardware platform | PC | µC |
Programming language | G (LabVIEW) | C |
Control of emission current | Yes | Yes |
Control algorithm | PID, gain scheduling | PID, gain scheduling |
Feedback signal transferring from the controlled to the control circuit | Instrumentation amplifier | Current mirror |
Average relative standard deviation of emission current | 0.021% | 0.015% |
Control of electron accelerating voltage | Yes | No |
Maximum percentage change in electron accelerating voltage | 0.011% | Estimated 2.360% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, J.; Kania, B.; Mroczka, J. Thermionic Electron Beam Current and Accelerating Voltage Controller for Gas Ion Sources. Sensors 2021, 21, 2878. https://doi.org/10.3390/s21082878
Sikora J, Kania B, Mroczka J. Thermionic Electron Beam Current and Accelerating Voltage Controller for Gas Ion Sources. Sensors. 2021; 21(8):2878. https://doi.org/10.3390/s21082878
Chicago/Turabian StyleSikora, Jarosław, Bartosz Kania, and Janusz Mroczka. 2021. "Thermionic Electron Beam Current and Accelerating Voltage Controller for Gas Ion Sources" Sensors 21, no. 8: 2878. https://doi.org/10.3390/s21082878
APA StyleSikora, J., Kania, B., & Mroczka, J. (2021). Thermionic Electron Beam Current and Accelerating Voltage Controller for Gas Ion Sources. Sensors, 21(8), 2878. https://doi.org/10.3390/s21082878