Soft Inductive Coil Spring Strain Sensor Integrated with SMA Spring Bundle Actuator
<p>Shape memory alloy (SMA) spring bundle actuator integrated with a soft inductive coil spring (SICS) strain sensor that mimics skeletal muscles, including muscle fibers and muscle spindle.</p> "> Figure 2
<p>(<b>a</b>) Geometry of coil spring. (<b>b</b>) Single coil spring and (<b>c</b>) its inductance depending on the length of coil spring. (<b>d</b>) Two coil springs and (<b>e</b>) their differential inductance change depending on the length of coil springs.</p> "> Figure 3
<p>Half-bridge circuit of AD598: (<b>a</b>) schematic diagram and (<b>b</b>) fabricated board.</p> "> Figure 4
<p>Fabrication process of the SMA coil for the SICS sensor: (<b>a</b>) winding jig, (<b>b</b>) SMA wire wound on the rod, (<b>c</b>) electric furnace for annealing, and (<b>d</b>) fabricated SMA coil for the SICS sensor.</p> "> Figure 5
<p>(<b>a</b>) Experimental configuration for measuring the relationship of the strain and output of SICS sensors and coil strain setting device and (<b>b</b>) measured relationship between the strain and sensor output.</p> "> Figure 6
<p>(<b>a</b>) Molds for silicone molding on the SMA coil; (<b>b</b>) silicone-molded SMA coils; (<b>c</b>) components before integrating the SMA spring bundle actuator (SSBA) and SICS sensor; (<b>d</b>) SICS sensor-integrated SSBA (SI-SSBA).</p> "> Figure 7
<p>(<b>a</b>) Experimental configuration and (<b>b</b>) setup for actuating the robotic arm and measuring its angular displacement.</p> "> Figure 8
<p>Comparisons of the laser displacement sensor output and SICS sensor output: (<b>a</b>) output comparison for the step motion of the robotic arm, (<b>b</b>) linear regression, (<b>c</b>) magnitude ratio and phase delay, (<b>d</b>) time-domain signals, and (<b>e</b>) Lissajous curve.</p> ">
Abstract
:1. Introduction
2. Operation Principle of the SICS Sensor
3. Design and Fabrication of the SICS Sensor
4. Output Characteristics of the SICS Sensor
5. Evaluation of the SICS Sensor in a Robotic Arm
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, C.H.; Choi, K.J.; Son, Y.S. Shape memory alloy-based spring bundle actuator controlled by water temperature. IEEE/ASME Trans. Mechatron. 2019, 24, 1798–1807. [Google Scholar] [CrossRef]
- Vogt, D.M.; Park, Y.-L.; Wood, R.J. Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels. IEEE Sens. J. 2013, 13, 4056–4064. [Google Scholar] [CrossRef]
- Park, Y.-L.; Chen, B.-R.; Wood, R.J. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sens. J. 2012, 12, 2711–2718. [Google Scholar] [CrossRef]
- Mengüç, Y.; Park, Y.-L.; Pei, H.; Vogt, D.; Aubin, P.M.; Winchell, E.; Fluke, L.; Stirling, L.; Wood, R.J.; Walsh, C.J. Wearable soft sensing suit for human gait measurement. Int. J. Rob. Res. 2014, 33, 1748–1764. [Google Scholar] [CrossRef]
- Xiao, X.; Yuan, L.; Zhong, J.; Ding, T.; Liu, Y.; Cai, Z.; Rong, Y.; Han, H.; Zhou, J.; Wang, Z.L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 2011, 23, 5440–5444. [Google Scholar] [CrossRef]
- Choi, D.Y.; Kim, M.H.; Oh, Y.S.; Jung, S.H.; Jung, J.H.; Sung, H.J.; Lee, H.W.; Lee, H.M. Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring. ACS Appl. Mater. Interfaces 2017, 9, 1770–1780. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, X.; Chen, J.; Xiong, T.; Jiang, B.; Huang, Y. Self-healing and stretchable PDMS-based bifunctional sensor enabled by synergistic dynamic interactions. Chem. Eng. J. 2021, 412, 128734. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Y.; Zhang, B.; Wan, K.; Zhu, J.; Xu, J.; Zhang, C.; Liu, T. Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors. Chem. Eng. J. 2021, 411, 128506. [Google Scholar] [CrossRef]
- Wang, S.; Fang, Y.; He, H.; Zhang, L.; Li, C.; Ouyang, J. Wearable Stretchable Dry and Self-Adhesive Strain Sensors with Conformal Contact to Skin for High-Quality Motion Monitoring. Adv. Funct. Mater. 2021, 31, 2007495. [Google Scholar] [CrossRef]
- Nguyen, T.; Chu, M.; Tu, R.; Khine, M. The effect of encapsulation on crack-based wrinkled thin film soft strain sensors. Materials 2021, 14, 364. [Google Scholar] [CrossRef]
- Wu, S.; Peng, S.; Yu, Y.; Wang, C.H. Strategies for Designing Stretchable Strain Sensors and Conductors. Adv. Mater. Technol. 2020, 5, 1–25. [Google Scholar] [CrossRef]
- Hassan, G.; Bae, J.; Hassan, A.; Ali, S.; Lee, C.H.; Choi, Y. Ink-jet printed stretchable strain sensor based on graphene/ZnO composite on micro-random ridged PDMS substrate. Compos. Part A Appl. Sci. Manuf. 2018, 107, 519–528. [Google Scholar] [CrossRef]
- Dang, Y.; Devaraj, H.; Stommel, M.; Cheng, L.K.; McDaid, A.J.; Xu, W. Experimental Investigation into the Dynamics of a Radially Contracting Actuator with Embedded Sensing Capability. Soft Robot. 2020, 7, 478–490. [Google Scholar] [CrossRef]
- Devaraj, H.; Giffney, T.; Petit, A.; Assadian, M.; Aw, K. The development of highly flexible stretch sensors for a Robotic Hand. Robotics 2018, 7, 54. [Google Scholar] [CrossRef]
- Atalay, A.; Sanchez, V.; Atalay, O.; Vogt, D.M.; Haufe, F.; Wood, R.J.; Walsh, C.J. Batch Fabrication of Customizable Silicone-Textile Composite Capacitive Strain Sensors for Human Motion Tracking. Adv. Mater. Technol. 2017, 2, 1–8. [Google Scholar] [CrossRef]
- Wang, H.; Totaro, M.; Beccai, L. Development of fully shielded soft inductive tactile sensors. In Proceedings of the The 26th IEEE International Conference on Electronics Circuits and Systems (ICECS), Genova, Italy, 27–30 November 2019; pp. 246–249. [Google Scholar] [CrossRef]
- Amjadi, M.; Kyung, K.U.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, J.; Jeon, B.; Park, Y.-L. Adaptive Calibration of Soft Sensors Using Optimal Transportation Transfer Learning for Mass Production and Long-Term Usage. Adv. Intell. Syst. 2020, 2, 1900178. [Google Scholar] [CrossRef]
- Cohen, D.J.; Mitra, D.; Peterson, K.; Maharbiz, M.M. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 2012, 12, 1821–1825. [Google Scholar] [CrossRef]
- Giffney, T.; Bejanin, E.; Kurian, A.S.; Travas-Sejdic, J.; Aw, K. Highly stretchable printed strain sensors using multi-walled carbon nanotube/silicone rubber composites. Sens. Actuators A Phys. 2017, 259, 44–49. [Google Scholar] [CrossRef]
- Beddiaf, A.; Kerrour, F.; Kemouche, S. Thermal drift characteristics of capacitive pressure sensors. J. Eng. Sci. Technol. 2016, 11, 346–361. [Google Scholar]
- Guo, X.; Huang, Y.; Cai, X.; Liu, C.; Liu, P. Capacitive wearable tactile sensor based on smart textile substrate with carbon black /silicone rubber composite dielectric. Meas. Sci. Technol. 2016, 27. [Google Scholar] [CrossRef]
- Nankali, M.; Nouri, N.M.; Navidbakhsh, M.; Geran Malek, N.; Amindehghan, M.A.; Montazeri Shahtoori, A.; Karimi, M.; Amjadi, M. Highly stretchable and sensitive strain sensors based on carbon nanotube-elastomer nanocomposites: The effect of environmental factors on strain sensing performance. J. Mater. Chem. C 2020, 8, 6185–6195. [Google Scholar] [CrossRef]
- Sareh, S.; Noh, Y.; Li, M.; Ranzani, T.; Liu, H.; Althoefer, K. Macrobend optical sensing for pose measurement in soft robot arms. Smart Mater. Struct. 2015, 24, 125024. [Google Scholar] [CrossRef]
- Jung, J.; Park, M.; Kim, D.; Park, Y.L. Optically Sensorized Elastomer Air Chamber for Proprioceptive Sensing of Soft Pneumatic Actuators. IEEE Robot. Autom. Lett. 2020, 5, 2333–2340. [Google Scholar] [CrossRef]
- Stupar, D.Z.; Bajic, J.S.; Manojlovic, L.M.; Slankamenac, M.P.; Joza, A.V.; Zivanov, M.B. Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor. IEEE Sens. J. 2012, 12, 3424–3431. [Google Scholar] [CrossRef]
- Silva, A.S.; Catarino, A.; Correia, M.V.; Frazão, O. Design and characterization of a wearable macrobending fiber optic sensor for human joint angle determination. Opt. Eng. 2013, 52, 126106. [Google Scholar] [CrossRef]
- Wu, C.; Liu, X.; Ying, Y. Soft and Stretchable Optical Waveguide: Light Delivery and Manipulation at Complex Biointerfaces Creating Unique Windows for On-Body Sensing. ACS Sens. 2021. [Google Scholar] [CrossRef]
- Van Der Weijde, J.; Smit, B.; Fritschi, M.; Van De Kamp, C.; Vallery, H. Self-sensing of deflection, force, and temperature for joule-heated twisted and coiled polymer muscles via electrical impedance. IEEE/ASME Trans. Mechatron. 2017, 22, 1268–1275. [Google Scholar] [CrossRef]
- Kim, H.; Han, Y.; Lee, D.Y.; Ha, J.I.; Cho, K.J. Sensorless displacement estimation of a shape memory alloy coil spring actuator using inductance. Smart Mater. Struct. 2013, 22. [Google Scholar] [CrossRef]
- Package, T.R. LVDT Signal Conditioner AD598; Analog Devices: Norwood, MA, USA.
Item | Value |
---|---|
SMA alloy | Nitinol (55% Ni) |
Transition temperature, | 40 °C |
SMA wire diameter | 0.5 mm |
Outer diameter of SMA coil spring | 3.0 mm |
SMA coil spring index | 5 |
SMA coil spring mass | 1.18 g |
Number of coil spring turns | 116 |
Vendor | Nexmetal, USA (https://www.nexmetal.com accessed on 22 February 2021) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, K.; Park, S.J.; Won, M.; Park, C.H. Soft Inductive Coil Spring Strain Sensor Integrated with SMA Spring Bundle Actuator. Sensors 2021, 21, 2304. https://doi.org/10.3390/s21072304
Choi K, Park SJ, Won M, Park CH. Soft Inductive Coil Spring Strain Sensor Integrated with SMA Spring Bundle Actuator. Sensors. 2021; 21(7):2304. https://doi.org/10.3390/s21072304
Chicago/Turabian StyleChoi, Kyungjun, Seong Jun Park, Mooncheol Won, and Cheol Hoon Park. 2021. "Soft Inductive Coil Spring Strain Sensor Integrated with SMA Spring Bundle Actuator" Sensors 21, no. 7: 2304. https://doi.org/10.3390/s21072304
APA StyleChoi, K., Park, S. J., Won, M., & Park, C. H. (2021). Soft Inductive Coil Spring Strain Sensor Integrated with SMA Spring Bundle Actuator. Sensors, 21(7), 2304. https://doi.org/10.3390/s21072304