Hyperdimensional Imaging Contrast Using an Optical Fiber
<p>Representation of two different hyperdimensional imaging microscopy (HDIM) collection schemes. The left panel shows the full-resolution HDIM collection that channels multiple photons from multiple detectors through a photon counting module. Each photon is tagged with its position (x,y), polarization (P), Spectrum (S), and Time-lag with respect to excitation pulse (T). An example dataset size is shown in the red font. The data from a single-pixel (x = x0, y = y0) is a 3D distribution (size shown in red font). Three typical routines to analyze this data to achieve a dimension-reduced format shown below. PCA/ICA (principal/independent component analysis), Transforms/Fitting of the curve to derive a limited number of parameters, Projection (e.g., maximum, sum) over an axis or binning over an axis to reduce the size of data. The right panel shows the proposed method where a variable “k” encodes the Time lag (T), Spectrum (S), and Polarization (P) in a single dimension. Compared to full-resolution data, this dataset is just one-dimensional for a single-pixel and can be transformed into a contrast score of interest.</p> "> Figure 2
<p>Optical schematic for the fiber-HDIM setup. The laser (Coherent MIRA) passes through an Electro-optic Modulator (EOM) and a polarization control unit that consists of a quarter waveplate (QWP) and a half wave plate (HWP). The light is guided using a mirror (M) into the microscope, and a dichroic beamsplitter is used to split the fluorescence from the excitation light. The emission travels to the port selection mirror right/left (MR-ML). The MR port sends the light to a fiber coupler (FC) and a multimode fiber (MMF) to the Photomultiplier tube (PMT). The ML port directs the light to a polarizing beam splitter (PBS) and two PMTs collecting photons at orthogonal polarization states. The ML port is only used for validation. The PMT signals from all ports and channeled to the router and read by a timing board. The timing board also compares the laser excitation timing from a photodiode (PD) and calculates arrival times of photon. The ML port is an anisotropic validation system, and the MR port is the fiber-HDIM system. The timing information is fed to the PC (computer), which can control the spatial position of the laser and map an image using Micromanager (MM). The EOM is controlled using a Pockels cell Controller (PCC), and the waveplates are motorized using Thorlabs Kinesis motor drivers KDC and KBD based on whether a D.C. or Brushless Motor is used for rotation.</p> "> Figure 3
<p><span class="html-italic">Arabidopsis</span> cotyledons and fluorescence lifetime imaging microscopy (FLIM). (<b>A</b>) Photograph of an Arabidopsis seedling showing anthocyanin accumulation in its cotyledons. The scale is 1 mm (<b>B</b>) A zoomed-in photograph of the cotyledon lower epidermis shows cells with different amounts of anthocyanins (purple shade). (<b>C</b>) FLIM image of the cotyledon lower epidermis, where single epidermal cells can be distinguished. The lower lifetimes (red color) correspond to anthocyanins. The scale bar is 200 micrometers, and the FLIM color bar is set for the mean lifetime image from 0.9 ns to 2.1 ns extracted from a multiexponential fit of the data.</p> "> Figure 4
<p>Multiparametric Collection. The contrast from different fluorescence modalities is compared here. The images are segmented for cotyledon epidermal cells, and each parameter per-cell is colored and overlaid on the intensity image (in grayscale). (<b>A</b>) the lifetime curves are fit using a 5 × 5 kernel size and fit to multiexponential fits. The mean lifetime is colored in this scheme. (<b>B</b>) The fractional component of the smallest lifetime species (anthocyanins) is shown. (<b>C</b>) The static anisotropy parameter (r) derived as a ratio of depolarized light to total emission light is shown here. (<b>D</b>) The time-resolved anisotropy curve (r(t)) is fit to multiexponential fit and plotted for the mean rotational time. Note that these values are higher than anthocyanin lifetime, and only the smallest (green) values represent anthocyanins. (<b>E</b>) The peak-wavelength parameter is derived from the fiber-shift calculation and overlaid as previous panels. Panels C and B are ratio-metric quantities without units. All five panels show different parameters, showing different contrast between cells.</p> "> Figure 5
<p>HDIM Computational Approach. The HDIM computation includes processing of large lifetime-histograms mapped to spectrum, and polarization read as a multidimensional data set (16 ch × 2 pol × 256) using a principal component analysis. (<b>A</b>) The seven derived inputs for PCA analysis are shown here. This includes fractional lifetime of the lowest lifetime species (a1), fractional rotational anisotropy of the lowest lifetime species(a1), intensity, mean fluorescence lifetime, spectral-peak wavelengths, static anisotropy values and time-resolved mean rotational time. This analysis reduces the data into three components, often painted in RGB. In this dataset, the derived parameters are fed into the PCA analysis, and only two components are derived, PC1, and PC2. The two components are painted in cyan and magenta and overlaid on the intensity image in panel (<b>B</b>). The two components were analyzed by multiple cluster separation using a k-means separation. A 2-component separation is shown in panel (<b>C</b>) as an example.</p> "> Figure 6
<p>Spectral Contrast using a filter. The spectral peak mapping using fiber dispersion and timing electronics is shown in panel (<b>A</b>). The same area gets a larger contrast when a 630/69 nm filter is added before the fiber (panel <b>B</b>). Comparing both image histograms is shown in panels (<b>C</b>) and (<b>D</b>) for panels (<b>A</b>) and (<b>B</b>), respectively. The images are 1.14 mm in size and use the same segmentation scheme shown before. The color scales of panels (<b>A</b>) and (<b>B</b>) are shown along the histograms presented in panels (<b>C</b>) and (<b>D</b>).</p> "> Figure 7
<p>HDIM PCA vs. fiber-HDIM. The PCA analysis result (<b>A</b>) is compared against the mean lifetime -spectral shift map (lambda-tau) map (<b>B</b>). The PC1-PC2 colors separate the plant cells poorly; however, lambda-tau maps show separation and further distinguish anthocyanin distribution better (panel <b>B</b>). The 2D scatter plot of the cells in panel (<b>B</b>) is shown in panel (<b>C</b>). The two separate clusters are visualized. Panel (<b>D</b>) shows a fit-free analysis of the spectrally coded lifetime data, which resolves two species. These cells (blue-scatter plot in phasor) are prominent in magenta color in panel (<b>B</b>), show a relatively lower lifetime, and represent a higher anthocyanin accumulation. The black line on the phasor plot is shown as a reference for 0.5 ns and 3.0 ns as the regular anthocyanin lifetime limits.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical Setup
2.2. Plant Culture
2.3. Image Analysis
3. Results
3.1. Hyperdimensional Imaging Using Derived Parameters
3.2. Single-Shot HDIM
3.3. Comparing Fiber HDIM vs. Derived Parameters HDIM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esposito, A.; Venkitaraman, A.R. Enhancing Biochemical Resolution by Hyperdimensional Imaging Microscopy. Biophys. J. 2019, 116, 1815–1822. [Google Scholar] [CrossRef]
- Datta, R.; Heaster, T.M.; Sharick, J.T.; Gillette, A.A.; Skala, M.C. Fluorescence Lifetime Imaging Microscopy: Fundamentals and Advances in Instrumentation, Analysis, and Applications. J. Biomed. Opt. 2020, 25, 071203. [Google Scholar] [CrossRef] [PubMed]
- Trinh, A.L.; Ber, S.; Howitt, A.; Valls, P.O.; Fries, M.W.; Venkitaraman, A.R.; Esposito, A. Fast Single-Cell Biochemistry: Theory, Open Source Microscopy and Applications. Methods Appl. Fluoresc. 2019, 7, 044001. [Google Scholar] [CrossRef] [Green Version]
- Appelhagen, I.; Vester, W.A.K.; Wendell, M.; Eide, H.A.K.; Russell, J.; Oertel, A.; Martens, S.; Mock, H.P.; Martin, C.; Matros, A. Colour Bio-Factories: Towards Scale-up Production of Anthocyanins in Plant Cell Cultures. Metab. Eng. 2018, 48, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Kovinich, N.; Kayanja, G.; Chanoca, A.; Otegui, M.S.; Grotewold, E. Abiotic Stresses Induce Different Localizations of Anthocyanins in Arabidopsis. Plant Signal. Behav. 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, K.; Davies, K.M.; Winefield, C. Anthocyanins: Biosynthesis, Functions, and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; ISBN 978-0-387-77335-3. [Google Scholar]
- Chanoca, A.; Kovinich, N.; Burkel, B.; Stecha, S.; Bohorquez-Restrepo, A.; Ueda, T.; Eliceiri, K.W.; Grotewold, E.; Otegui, M.S. Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism. Plant Cell 2015, 27, 2545–2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanoca, A.; Burkel, B.; Kovinich, N.; Grotewold, E.; Eliceiri, K.W.; Otegui, M.S. Using Fluorescence Lifetime Microscopy to Study the Subcellular Localization of Anthocyanins. Plant J. 2016, 88, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Chanoca, A.; Burkel, B.; Grotewold, E.; Eliceiri, K.W.; Otegui, M.S. Imaging Vacuolar Anthocyanins with Fluorescence Lifetime Microscopy (FLIM). In Plant Vacuolar Trafficking; Springer: Manhattan, NY, USA, 2018; pp. 131–141. [Google Scholar]
- Becker, W.; Bergmann, A.; Hink, M.A.; König, K.; Benndorf, K.; Biskup, C. Fluorescence Lifetime Imaging by Time-Correlated Single-Photon Counting. Microsc. Res. Tech. 2004, 63, 58–66. [Google Scholar] [CrossRef]
- Hirmiz, N.; Tsikouras, A.; Osterlund, E.J.; Richards, M.; Andrews, D.W.; Fang, Q. Highly Multiplexed Confocal Fluorescence Lifetime Microscope Designed for Screening Applications. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 1–9. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Manhattan, NY, USA, 2006; ISBN 978-0-387-31278-1. [Google Scholar]
- Heikal, A.A. Chapter five-A Multiparametric Fluorescence Approach for Biomembrane Studies. In Advances in Planar Lipid Bilayers and Liposomes; Iglič, A., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 13, pp. 169–197. [Google Scholar]
- Mondal, S.B.; Gao, S.; Zhu, N.; Liang, R.; Gruev, V.; Achilefu, S. Real-time fluorescence image-guided oncologic surgery. In Advances in Cancer Research; Elsevier: Amsterdam, The Netherlands, 2014; Volume 124, pp. 171–211. [Google Scholar]
- Kapsalaki, E.; Vassiou, K.; Valotassiou, V.; Georgoulias, P.; Fezoulidis, I. Multimodality-Multiparametric Brain Tumors Evaluation. Hell. J. Nucl. Med. 2017, 20, 57–61. [Google Scholar]
- Diaspro, A. Optical Fluorescence Microscopy: From the Spectral to the Nano Dimension; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-15175-0. [Google Scholar]
- Marcu, L. Fluorescence Lifetime in Cardiovascular Diagnostics. J. Biomed. Opt. 2010, 15, 1106. [Google Scholar] [CrossRef] [PubMed]
- Periasamy, A. Methods in Cellular Imaging; Springer: Manhattan, NY, USA, 2013; ISBN 978-1-4614-7513-2. [Google Scholar]
- Evanko, D.; Heinrichs, A.; Rosenthal, C.K. Nature Milestones: Light Microscopy; Nature Publishing Group: London, UK, 2009. [Google Scholar]
- Valeur, B.; Santos, B.M.N. Molecular Fluorescence: Principles and Applications, 2nd ed.; Wiley VCH: Weinheim, Germany; Chichester, UK, 2012; ISBN 978-3-527-32837-6. [Google Scholar]
- Wohland, T.P.; Maiti, S.P.; Machan, R.P. Introduction to Fluorescence Correlation Spectroscopy; Iop Publishing Ltd.: Bristol, UK, 2021; ISBN 978-0-7503-2078-8. [Google Scholar]
- Vogel, S.S.; Thaler, C.; Blank, P.S.; Koushik, S.V. Time-Resolved Fluorescence Anisotropy. FLIM Microsc. Biol. Med. 2009, 1, 245–288. [Google Scholar]
- Cutrale, F.; Trivedi, V.; Trinh, L.A.; Chiu, C.L.; Choi, J.M.; Artiga, M.S.; Fraser, S.E. Hyperspectral Phasor Analysis Enables Multiplexed 5D in Vivo Imaging. Nat. Methods 2017, 14, 149–152. [Google Scholar] [CrossRef]
- Chacko, J.; Sagar, M.A.K.; Eliceiri, K.W. Fluorescence Lifetime: Techniques, Analysis, and Applications in the Life Sciences. In Imaging from Cells to Animals In Vivo; CRC Press: Boca Raton, FL, USA, 2020; p. 141. [Google Scholar]
- Suhling, K. Multidimensional Fluorescence Microscopy for Simultaneous Functional and Structural Imaging. Biophys. J. 2019, 116, 1787–1789. [Google Scholar] [CrossRef]
- Allen, G.I.; Grosenick, L.; Taylor, J. A Generalized Least-Square Matrix Decomposition. J. Am. Stat. Assoc. 2014, 109, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, P. Dimension reduction. In Machine Learning Techniques for Multimedia; Springer: Manhattan, NY, USA, 2008; pp. 91–112. [Google Scholar]
- Fodor, I.K. A Survey of Dimension Reduction Techniques; Lawrence Livermore National Lab.: Livermore, CA, USA, 2002.
- Sasaki, N.; Nishizaki, Y.; Ozeki, Y.; Miyahara, T. The Role of Acyl-Glucose in Anthocyanin Modifications. Molecules 2014, 19, 18747. [Google Scholar] [CrossRef]
- Chacko, J.V.; Eliceiri, K.W. A Novel Anisotropy Imaging Technique for NAD (P) H Autofluorescence. Microsc. Microanal. 2019, 25, 1246–1247. [Google Scholar] [CrossRef] [Green Version]
- Chacko, J.; Eliceiri, K. Time-Resolved Anisotropy for Cellular Metabolic Interpretations. In Proceedings of the Multiphoton Microscopy in the Biomedical Sciences XX; SPIE: San Francisco, CA, USA, 2020; Volume 11244, p. 2. [Google Scholar]
- Edelstein, A.D.; Tsuchida, M.A.; Amodaj, N.; Pinkard, H.; Vale, R.D.; Stuurman, N. Advanced Methods of Microscope Control Using ΜManager Software. J. Biol. Methods 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Sagar, M.A.K.; Dai, B.; Chacko, J.V.; Weber, J.J.; Velten, A.; Sanders, S.T.; White, J.G.; Eliceiri, K.W. Optical Fiber-Based Dispersion for Spectral Discrimination in Fluorescence Lifetime Imaging Systems. J. Biomed. Opt. 2019, 25, 4506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, D.; Barber, P.R.; Chacko, J.V.; Sagar, M.A.K.; Rueden, C.T.; Grislis, A.R.; Hiner, M.C.; Eliceiri, K.W. FLIMJ: An Open-Source ImageJ Toolkit for Fluorescence Lifetime Image Data Analysis. BioRxiv 2020, 15. [Google Scholar] [CrossRef]
- Stringer, C.; Wang, T.; Michaelos, M.; Pachitariu, M. Cellpose: A Generalist Algorithm for Cellular Segmentation. Nat. Methods 2020, 18, 100–106. [Google Scholar] [CrossRef]
- Schindelin, J.; Carreras, A.I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Perinbam, K.; Chacko, J.V.; Kannan, A.; Digman, M.A.; Siryaporn, A. A Shift in Central Metabolism Accompanies Virulence Activation in Pseudomonas Aeruginosa. Mbio 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, H.; Hastie, T.; Tibshirani, R. Sparse Principal Component Analysis. J. Comput. Graph. Stat. 2006, 15, 265–286. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacko, J.V.; Lee, H.N.; Wu, W.; Otegui, M.S.; Eliceiri, K.W. Hyperdimensional Imaging Contrast Using an Optical Fiber. Sensors 2021, 21, 1201. https://doi.org/10.3390/s21041201
Chacko JV, Lee HN, Wu W, Otegui MS, Eliceiri KW. Hyperdimensional Imaging Contrast Using an Optical Fiber. Sensors. 2021; 21(4):1201. https://doi.org/10.3390/s21041201
Chicago/Turabian StyleChacko, Jenu V., Han Nim Lee, Wenxin Wu, Marisa S. Otegui, and Kevin W. Eliceiri. 2021. "Hyperdimensional Imaging Contrast Using an Optical Fiber" Sensors 21, no. 4: 1201. https://doi.org/10.3390/s21041201
APA StyleChacko, J. V., Lee, H. N., Wu, W., Otegui, M. S., & Eliceiri, K. W. (2021). Hyperdimensional Imaging Contrast Using an Optical Fiber. Sensors, 21(4), 1201. https://doi.org/10.3390/s21041201