Detail-Preserving Shape Unfolding
<p>The illustration of local rigid deformation. Cell <math display="inline"><semantics> <msub> <mi>C</mi> <mi>i</mi> </msub> </semantics></math> and its deformed version <math display="inline"><semantics> <msubsup> <mi>C</mi> <mi>i</mi> <msup> <mrow/> <mo>′</mo> </msup> </msubsup> </semantics></math> are composed of these black edges.</p> "> Figure 2
<p>The influences of <math display="inline"><semantics> <mi>β</mi> </semantics></math>. (<b>a</b>) is the original mesh. From (<b>b</b>–<b>d</b>) are the mesh unfolding results with <math display="inline"><semantics> <mi>β</mi> </semantics></math> = 5 × 10<math display="inline"><semantics> <msup> <mrow/> <mn>5</mn> </msup> </semantics></math>, 1 × 10<math display="inline"><semantics> <msup> <mrow/> <mn>6</mn> </msup> </semantics></math>, 2 × 10<math display="inline"><semantics> <msup> <mrow/> <mn>6</mn> </msup> </semantics></math>, respectively. (<b>e</b>) shows the convergence curve of the objective function with <math display="inline"><semantics> <mi>β</mi> </semantics></math> = 1 × 10<math display="inline"><semantics> <msup> <mrow/> <mn>6</mn> </msup> </semantics></math>.</p> "> Figure 3
<p>From left to right are the original tetrahedral mesh (<b>a</b>), the result of the first cascade (<b>b</b>), the result of the second cascade (<b>c</b>), the result of the fourth cascade (<b>d</b>), the result of the fourth cascade (<b>e</b>), and the convergence curve of the objective function (<b>f</b>). The jumps in (<b>f</b>) are caused by the incremental increasing of <math display="inline"><semantics> <mi>β</mi> </semantics></math>.</p> "> Figure 4
<p>The influences of different initial <math display="inline"><semantics> <mi>β</mi> </semantics></math>. Original glass model (<b>top</b>) understretches with <math display="inline"><semantics> <mi>β</mi> </semantics></math> = 10 × 10<math display="inline"><semantics> <msup> <mrow/> <mn>6</mn> </msup> </semantics></math> (<b>second row</b>), overstretches with <math display="inline"><semantics> <mi>β</mi> </semantics></math>= 1 ×10<math display="inline"><semantics> <msup> <mrow/> <mn>6</mn> </msup> </semantics></math> (<b>fourth row</b>), and unfolds well with <math display="inline"><semantics> <mi>β</mi> </semantics></math> = 5 × 10<math display="inline"><semantics> <msup> <mrow/> <mn>6</mn> </msup> </semantics></math> (<b>third row</b>).</p> "> Figure 5
<p>Illustration of mesh unfolding results of different methods. (<b>a</b>) original meshes, (<b>b</b>) the results of least squares multidimensional scaling method (LSMDS) [<a href="#B11-sensors-21-01187" class="html-bibr">11</a>], (<b>c</b>) the results of skeleton based canonical form (SCF) [<a href="#B28-sensors-21-01187" class="html-bibr">28</a>], (<b>d</b>) the results of detail-preserving mesh unfolding (DPMU) [<a href="#B24-sensors-21-01187" class="html-bibr">24</a>] and (<b>e</b>) our results.</p> "> Figure 6
<p>The cumulative probability distributions of <math display="inline"><semantics> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>i</mi> <mi>g</mi> </mrow> </msub> </semantics></math> (<b>a</b>), <math display="inline"><semantics> <msub> <mi>E</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> </mrow> </msub> </semantics></math> (<b>b</b>) and <math display="inline"><semantics> <msub> <mi>E</mi> <mrow> <mi>g</mi> <mi>e</mi> <mi>o</mi> </mrow> </msub> </semantics></math> (<b>c</b>) for different methods.</p> "> Figure 7
<p>Comparison with state-of-the-art method [<a href="#B24-sensors-21-01187" class="html-bibr">24</a>]. (<b>a</b>) Original meshes. (<b>b</b>) Results of DPMU. (<b>c</b>) Our results. The corresponding time consumption is shown in <a href="#sensors-21-01187-t002" class="html-table">Table 2</a>.</p> "> Figure 8
<p>Different poses of the same model ((<b>a</b>)-left and (<b>b</b>)-left) results in different canonical forms ((<b>a</b>)-right and (<b>b</b>)-right). With user control (red point pair in (<b>c</b>)-left), the quality of the canonical form can be largely improved ((<b>c</b>)-right). The second and third columns of each subfigure show the same model under two views.</p> "> Figure 9
<p>While the canonical form ((<b>a</b>)-middle) generated with our method for the Octopus model ((<b>a</b>)-left) is satisfactory, its tentacles are not in a plane from the other view((<b>a</b>)-right). To improve it, we interactively select points at the end of its tentacles shown as red color in (<b>b</b>)-left. The results shown with two views( (<b>b</b>)-middle and (<b>b</b>)-right), which are obtained by restricting the directions and lengths of the adjacent points.</p> "> Figure 10
<p>Failure cases. Left: the original mesh. Right: the unfold mesh. Our algorithm unfolds the legs successfully, but the adhesion remains unchanged.</p> ">
Abstract
:1. Introduction
- A novel shape unfolding method is proposed for non-rigid 3D mesh based on shape deformation technique. It makes the local deformation be approximately rigid and more details can be preserved.
- The proposed algorithm is easy to implement and parallel computation can be used to improve its computational efficiency. In addition, cascade strategy is used to effectively prevent mesh overstretching.
2. Related Work
2.1. Shape Unfolding without Detail Preservation
2.2. Shape Unfolding with Detail Preservation
2.3. Other Special Poses
3. Technical Details
3.1. Rigid Transformation between Two Cells
3.2. Shape Unfolding Model
4. Implementation Details
4.1. Initial Exploration
4.2. Parameters
Algorithm 1 Shape unfolding cascading algorithm |
Input: Original tetrahedral mesh , original edge lengths , initial energy , initial , the maximum cascading number , the maximum iterations for each cascade and the precision . Output: Deformed tetrahedral mesh .
|
5. Experimental Details
5.1. Quantitative Metrics
5.2. Comparisons
5.3. Application to Shape Retrieval
6. Integration with User Control
7. Conclusions
8. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tangelder, J.W.; Veltkamp, R.C. A survey of content based 3D shape retrieval methods. In Proceedings of the Shape Modeling Applications, Genova, Italy, 7–9 June 2004; pp. 145–156. [Google Scholar]
- Lian, Z.; Godil, A.; Sun, X.; Xiao, J. CM-BOF: Visual similarity-based 3D shape retrieval using Clock Matching and Bag-of-Features. Mach. Vis. Appl. 2013, 24, 1685–1704. [Google Scholar] [CrossRef]
- Lian, Z.; Godil, A.; Xiao, J. Feature-Preserved 3D Canonical Form; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2013; pp. 221–238. [Google Scholar]
- Jain, V.; Zhang, H. Robust 3D Shape Correspondence in the Spectral Domain. In Proceedings of the IEEE International Conference on Shape Modeling and Applications, Matsushima, Japan, 14–16 June 2006; p. 19. [Google Scholar]
- Li, S.M.; Wang, C.C.L.; Hui, K.C. Bending-Invariant Correspondence Matching on 3D Human Bodies for Feature Point Extraction. IEEE Trans. Autom. Sci. Eng. 2011, 8, 805–814. [Google Scholar] [CrossRef]
- Sahillioğlu, Y.; Yemez, Y. Minimum-Distortion Isometric Shape Correspondence Using EM Algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2203–2215. [Google Scholar] [CrossRef]
- Zigelman, G.; Kimmel, R.; Kiryati, N. Texture mapping using surface flattening via MDS. IEEE Trans. Vis. Comput. Graph. 2002, 8, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Elad, A.; Keller, Y.; Kimmel, R. Texture Mapping via Spherical Multi-dimensional Scaling. In Proceedings of the 5th international conference on Scale Space and PDE Methods in Computer Vision, Hofgeismar, Germany, 7–9 April 2005. [Google Scholar]
- Cox, M.A.A.; Cox, T.F. Multidimensional Scaling. J. R. Stat. Soc. 2001, 46, 1050–1057. [Google Scholar]
- Rustamov, R.M.; Lipman, Y.; Funkhouser, T. Interior Distance Using Barycentric Coordinates. Comput. Graph. Forum 2010, 28, 1279–1288. [Google Scholar] [CrossRef]
- Elad, A.; Kimmel, R. On bending invariant signatures for surfaces. Pattern Anal. Mach. Intell. IEEE Trans. 2003, 25, 1285–1295. [Google Scholar] [CrossRef]
- Borg, I.; Groenen, P.J. Modern Multidimensional Scaling: Theory and Applications. J. Educ. Meas. 2006, 40, 277–280. [Google Scholar] [CrossRef]
- Bronstein, A.M.; Bronstein, M.M.; Kimmel, R. Numerical Geometry of Non-Rigid Shapes; Springer: New York, NY, USA, 2009. [Google Scholar]
- Faloutsos, C.; Lin, K.I. FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In Proceedings of the ACM Sigmod International Conference on Management of Data, San Jose, CA, USA, 23–25 May 1995; pp. 163–174. [Google Scholar]
- Silva, V.D.; Tenenbaum, J.B. Global Versus Local Methods in Nonlinear Dimensionality Reduction. In Proceedings of the International Conference on Neural Information Processing Systems, Vancouver, UK, 9–14 December 2002. [Google Scholar]
- Aflalo, Y.; Kimmel, R. Spectral multidimensional scaling. Proc. Natl. Acad. Sci. USA 2013, 110, 18052–18057. [Google Scholar] [CrossRef] [Green Version]
- Panozzo, D.; Baran, I.; Diamanti, O.; Sorkine-Hornung, O. Weighted Averages on Surfaces. ACM Trans. Graph. (TOG) 2013, 32. [Google Scholar] [CrossRef]
- Igarashi, T.; Moscovich, T.; Hughes, J.F. As-Rigid-as-Possible Shape Manipulation. ACM Trans. Graph. 2005, 24, 1134–1141. [Google Scholar] [CrossRef]
- Sorkine, O.; Alexa, M. As-rigid-as-possible surface modeling. In Proceedings of the Eurographics Symposium on Geometry Processing, Barcelona, Spain, 4–6 July 2007; pp. 109–116. [Google Scholar]
- Yan, H.B.; Hu, S.; Martin, R.R.; Yang, Y.L. Shape deformation using a skeleton to drive simplex transformations. IEEE Trans. Vis. Comput. Graph. 2008, 14, 693–706. [Google Scholar]
- Lai, Y.K.; Hu, S.M.; Martin, R.R.; Rosin, P.L. Fast mesh segmentation using random walks. In Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling; ACM: New York, NY, USA, 2008; pp. 183–191. [Google Scholar]
- Ji, Z.; Liu, L.; Chen, Z.; Wang, G. Easy Mesh Cutting. Comput. Graph. Forum 2010, 25, 283–291. [Google Scholar] [CrossRef]
- Liu, B.; Wang, W.; Cao, J.; Liu, X. Interactive mesh cutting with Laplace coordinates and gradient. Commun. Inf. Syst. 2017, 17, 65–83. [Google Scholar] [CrossRef]
- Yusuf, S.; Ladislav, K. Detail-Preserving Mesh Unfolding for Nonrigid Shape Retrieval. ACM Trans. Graph. 2016, 35, 1–11. [Google Scholar]
- Liu, J.; Lian, Z.; Xiao, J. 3D mesh unfolding via semidefinite programming. In Proceedings of the Eurographics Workshop on 3D Object Retrieval, The Eurographics Association, Lyon, France, 23–24 April 2017. [Google Scholar]
- Katz, S.; Leifman, G.; Tal, A. Mesh segmentation using feature point and core extraction. Vis. Comput. 2005, 21, 649–658. [Google Scholar] [CrossRef]
- Shamai, G.; Zibulevsky, M.; Kimmel, R. Accelerating the computation of canonical forms for 3D nonrigid objects using multidimensional scaling. In Proceedings of the 2015 Eurographics Workshop on 3D Object Retrieval. Eurographics Association, Zurich, Switzerland, 2–3 May 2015; pp. 71–78. [Google Scholar]
- Pickup, D.; Sun, X.; Rosin, P.L.; Martin, R.R. Skeleton-based canonical forms for non-rigid 3D shape retrieval. Comput. Vis. Media 2016, 2, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Pickup, D.; Liu, J.; Sun, X.; Rosin, P.L.; Martin, R.R.; Cheng, Z.; Lian, Z.; Nie, S.; Jin, L.; Shamai, G. An evaluation of canonical forms for non-rigid 3D shape retrieval. Graph. Model. 2018, 97, 17–29. [Google Scholar] [CrossRef]
- Kimmel, R.; Sethian, J.A. Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 1998, 95, 8431–8435. [Google Scholar] [CrossRef] [Green Version]
- Rustamov, R.M. Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing; Eurographics Association: Goslar, Germany, 2007; pp. 225–233. [Google Scholar]
- Raviv, D.; Bronstein, M.M.; Bronstein, A.M.; Kimmel, R. Volumetric Heat Kernel Signatures; ACM: New York, NY, USA, 2010. [Google Scholar]
- Sahillioğlu, Y. A shape deformation algorithm for constrained multidimensional scaling. Comput. Graph. 2015, 53, 156–165. [Google Scholar] [CrossRef]
- Au, O.K.C.; Tai, C.L.; Chu, H.K.; Cohen-Or, D.; Lee, T.Y. Skeleton extraction by mesh contraction. ACM Trans. Graph. (TOG) 2008, 27, 44. [Google Scholar] [CrossRef]
- Pickup, D.; Sun, X.; Rosin, P.L.; Martin, R.R. Euclidean-distance-based canonical forms for non-rigid 3D shape retrieval. Pattern Recognit. 2015, 48, 2500–2512. [Google Scholar] [CrossRef] [Green Version]
- Byrd, R.; Nocedal, J.; Waltz, R. Knitro: An Integrated Package for Nonlinear Optimization; Springer: New York, NY, USA, 2006. [Google Scholar]
- Mitra, N.J.; Guibas, L.J.; Pauly, M. Symmetrization. ACM Trans. Graph. 2007, 26, 63.1–63.8. [Google Scholar] [CrossRef]
- Twigg, C.; Kacic-Alesic, Z. Optimization for Sag-Free Simulations. In Proceedings of the 2011 Eurographics/ACM SIGGRAPH Symposium on Computer Animation, SCA 2011, Vancouver, BC, Canada, 5–7 August 2011; pp. 225–236. [Google Scholar] [CrossRef]
- Derouet-Jourdan, A.; Bertails-Descoubes, F.; Thollot, J. Stable Inverse Dynamic Curves. ACM Trans. Graph. 2010, 29, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Derouet-Jourdan, A.; Bertails-Descoubes, F.; Daviet, G.; Thollot, J. Inverse dynamic hair modeling with frictional contact. ACM Trans. Graph. 2013, 32, 159:1–159:10. [Google Scholar] [CrossRef] [Green Version]
- Prévost, R.; Whiting, E.; Lefebvre, S.; Sorkine-Hornung, O. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Trans. Graph. 2013, 32, 1–10. [Google Scholar] [CrossRef]
- Skouras, M.; Thomaszewski, B.; Bickel, B.; Gross, M. Computational Design of Rubber Balloons. Comput. Graph. Forum 2012, 31, 835–844. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, C.; Xu, W.; Zhou, K. An Asymptotic Numerical Method for Inverse Elastic Shape Design. ACM Trans. Graph. 2014, 33, 1–11. [Google Scholar] [CrossRef]
- Wang, H.; Sidorov, K.A.; Sandilands, P.; Komura, T. Harmonic parameterization by electrostatics. ACM Trans. Graph. 2013, 32, 13–15. [Google Scholar] [CrossRef]
- Luenberger, D.G. Observing the state of linear system. IEEE Trans. Mil. Electron 1964, 8, 74–80. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Xu, Y.; Gotsman, C.; Gortler, S.J. A Local/Global Approach to Mesh Parameterization. In Symposium on Geometry Processing; SGP ’08; Eurographics Association: Goslar, Germany, 2008; pp. 1495–1504. [Google Scholar]
- Lian, Z.; Godil, A.; Bustos, B.; Daoudi, M.; Hermans, J.; Kawamura, S.; Kurita, Y.; Lavoué, G.; Nguyen, H.V.; Ohbuchi, R.; et al. SHREC’11 track: Shape retrieval on non-rigid 3D watertight meshes. In Proceedings of the 4th Eurographics conference on 3D Object Retrieval; EG 3DOR’11; Eurographics Association: Goslar, Germany, 2011; pp. 79–88. [Google Scholar]
- Hang, S. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans. Math. Softw. 2015, 41, 1–36. [Google Scholar]
- Jacobson, A.; Kavan, L.; Sorkine-Hornung, O. Robust inside-outside segmentation using generalized winding numbers. ACM Trans. Graph. 2013, 32, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lian, Z.; Zhang, J.; Choi, S.; ElNaghy, H.; El-Sana, J.; Furuya, T.; Giachetti, A.; Guler, R.A.; Lai, L.; Li, C.; et al. Non-rigid 3D Shape Retrieval. In Proceedings of the Eurographics Workshop on 3D Object Retrieval, Zurich, Switzerland, 2–3 May 2015; Pratikakis, I., Spagnuolo, M., Theoharis, T., Gool, L.V., Veltkamp, R., Eds.; The Eurographics Association: Goslar, Germany, 2015. [Google Scholar] [CrossRef]
- Masoumi, M.; Li, C.; Hamza, A.B. A spectral Graph Wavelet Approach for Nonrigid 3D Shape Retrieval; Elsevier Science Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Biasotti, S.; Cerri, A.; Aono, M.; Hamza, A.B.; Garro, V.; Giachetti, A.; Giorgi, D.; Godil, A.; Li, C.; Sanada, C.A. Retrieval and classification methods for textured 3D models: A comparative study. Vis. Comput. 2016, 32, 217–241. [Google Scholar] [CrossRef]
- Arun, K.S. Least-Squares Fitting of Two 3-D Point Sets. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 9, 698–700. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I.T. Principal Component Analysis. J. Mark. Res. 2002, 87, 513. [Google Scholar]
- Lian, Z.; Rosin, P.L.; Sun, X. Rectilinearity of 3D Meshes. Int. J. Comput. Vis. 2010, 89, 130–151. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Clark, M.; Rajagopalan, B. Nearest neighbors. Water Resour. Res. 2005, 41, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Lhner, Z.; Rodolà, E.; Bronstein, M.M.; Cremers, D.; Sahillioglu, Y. SHREC’16: Matching of Deformable Shapes with Topological Noise. In Proceedings of the Eurographics Workshop on 3d Object Retrieval, Lisbon, Portugal, 8 May 2016. [Google Scholar]
Category | Ants | Cat | Centaur | Dinosaur | Glasses | Shark | |
---|---|---|---|---|---|---|---|
Methods | |||||||
LSMDS [11] | (2.25, 0.20, 0.38) | (1.53, 0.14, 0.37) | (1.79, 0.19, 0.33) | (1.81, 0.22, 0.45) | (2.04, 0.80, 0.77) | (1.65, 0.15, 0.38) | |
SCF [28] | (2.05, 0.14, 0.89) | (1.80, 0.17, 0.89) | (2.14, 0.23, 0.96) | (1.93, 0.22, 1.09) | (2.11, 1.06, 2.05) | (1.86, 0.24, 1.10) | |
DPMU [24] | (0.54, 0.16, 0.44) | (0.43, 0.11, 0.43) | (0.57, 0.18, 0.38) | (0.61, 0.24, 0.61) | (2.95, 1.55, 1.34) | (0.70, 0.22, 0.50) | |
Ours | (0.38, 0.16, 0.44) | (0.32, 0.11, 0.43) | (0.32, 0.15, 0.37) | (0.33, 0.19, 0.55) | (0.51, 1.01, 1.05) | (0.80, 0.32, 0.58) |
Models | Alien | Garilla | Snake | Woman |
---|---|---|---|---|
Num. of Vertices | 4062 | 5091 | 4229 | 4823 |
Time of DPMU | 687.05 | 190.12 | 1137.23 | 147.39 |
Time of ours | 84.12 | 157.01 | 83.25 | 115.57 |
Time of ours (parallel) | 30.87 | 54.37 | 31.02 | 46.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Wang, W.; Zhou, J.; Li, B.; Liu, X. Detail-Preserving Shape Unfolding. Sensors 2021, 21, 1187. https://doi.org/10.3390/s21041187
Liu B, Wang W, Zhou J, Li B, Liu X. Detail-Preserving Shape Unfolding. Sensors. 2021; 21(4):1187. https://doi.org/10.3390/s21041187
Chicago/Turabian StyleLiu, Bin, Weiming Wang, Jun Zhou, Bo Li, and Xiuping Liu. 2021. "Detail-Preserving Shape Unfolding" Sensors 21, no. 4: 1187. https://doi.org/10.3390/s21041187