Noncontact Respiratory Monitoring Using Depth Sensing Cameras: A Review of Current Literature
<p>An RGB image of a subject under a sheet (<b>left</b>) and its corresponding depth image (<b>right</b>).</p> "> Figure 2
<p>(<b>a</b>) Depth camera system schematic illustrating the field of view (FOV) and region of interest (ROI) and the processing of the ROI information to produce the respiratory volume (RV) signal. T is the length of a time window used in the calculation of respiratory rate. (<b>b</b>) Respiratory volume signal acquired from a heathy volunteer using a Kinect<sup>TM</sup> V2 depth camera (Microsoft, Redmond, WA, USA). Triangles indicate the peaks and troughs of the signal modulations.</p> "> Figure 3
<p>An example of respiratory rate and tidal volume derived from a depth sensing system. (<b>a</b>) The volume signal obtained from a depth sensing camera. The signal was generated by the subject varying his tidal volume over time. (<b>b</b>) The raw and filtered respiratory rate from a depth system compared to a ventilator reference. (<b>c</b>) The tidal volume computed from the respiratory volume signal (peak to trough in (<b>a</b>)) compared to a ventilator reference.</p> "> Figure 4
<p>Examples of respiratory patterns in the RV signal from three separate studies. (<b>a</b>) Respiratory patterns generated by deliberately varying tidal volume cyclically. The ROI is fitted to the chest region using a flood fill technique. (<b>b</b>) Respiratory patterns manifest in a signal collected during a breathe-down study. The ROI is a rectangular subset of the chest. (Reprinted from [<a href="#B17-sensors-21-01135" class="html-bibr">17</a>].) (<b>c</b>) A simulated apnea signal. The ROI is the whole image.</p> "> Figure 4 Cont.
<p>Examples of respiratory patterns in the RV signal from three separate studies. (<b>a</b>) Respiratory patterns generated by deliberately varying tidal volume cyclically. The ROI is fitted to the chest region using a flood fill technique. (<b>b</b>) Respiratory patterns manifest in a signal collected during a breathe-down study. The ROI is a rectangular subset of the chest. (Reprinted from [<a href="#B17-sensors-21-01135" class="html-bibr">17</a>].) (<b>c</b>) A simulated apnea signal. The ROI is the whole image.</p> "> Figure 4 Cont.
<p>Examples of respiratory patterns in the RV signal from three separate studies. (<b>a</b>) Respiratory patterns generated by deliberately varying tidal volume cyclically. The ROI is fitted to the chest region using a flood fill technique. (<b>b</b>) Respiratory patterns manifest in a signal collected during a breathe-down study. The ROI is a rectangular subset of the chest. (Reprinted from [<a href="#B17-sensors-21-01135" class="html-bibr">17</a>].) (<b>c</b>) A simulated apnea signal. The ROI is the whole image.</p> ">
Abstract
:1. Introduction
2. Deriving Respiratory Information Using a Depth Camera
3. Respiratory Rate
3.1. Respiratory Rate Benchtop/Lab Studies
3.2. Respiratory Rate Clinical Healthy Volunteer and Patient Studies
4. Respiratory Volume Analysis
4.1. Tidal Volume and Other Characteristic Volumes
4.2. Respiratory Volume Signal Analysis
4.3. Patterns and Apneas in Respiratory Volume Signals
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, M.E.B.; Chiovaro, J.C.; O’Neil, M.; Kansagara, D.; Quiñones, A.R.; Freeman, M.; Motu’apuaka, M.L.; Slatore, C.G. Early warning system scores for clinical deterioration in hospitalized patients: A systematic review. Ann. Am. Thorac. Soc. 2014, 11, 1454–1465. [Google Scholar] [CrossRef] [PubMed]
- Dahan, A.; Aarts, L.; Smith, T. Incidence, reversal, and prevention of opioid-induced respiratory depression. Anesthesiology 2010, 112, 226–238. [Google Scholar] [CrossRef] [Green Version]
- Bergese, S.D.; Mestek, M.L.; Kelley, S.D.; McIntyre, R.; Uribe, A.A.; Sethi, R.; Watson, J.N.; Addison, P.S. Multicenter study validating accuracy of a continuous respiratory rate measurement derived from pulse oximetry: A comparison with capnography. Anesth. Analg. 2017, 124, 1153–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michard, F.; Gan, T.; Bellomo, R. Protecting Ward Patients: The Case for Continuous Monitoring. ICU Manag. Pract. 2019, 19, 10–14. [Google Scholar]
- McDuff, D.J.; Estepp, J.R.; Piasecki, A.M.; Blackford, E.B. A survey of remote optical photoplethysmographic imaging methods. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 6398–6404. [Google Scholar]
- Addison, P.S.; Jacquel, D.; Foo, D.M.H.; Antunes, A.; Borg, U.R. Video-Based Physiologic Monitoring During an Acute Hypoxic Challenge. Anesth. Analg. 2017, 125, 860–873. [Google Scholar] [CrossRef]
- Li, M.H.; Yadollahi, A.; Taati, B. A non-contact vision-based system for respiratory rate estimation. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 2119–2122. [Google Scholar]
- Scalise, L.; Ercoli, I.; Marchionni, P.; Tomasini, E.P. Measurement of Respiration Rate in Preterm Infants by Laser Doppler Vibrometry. Med. Meas. Appl. Proc. 2011, 657–661. [Google Scholar] [CrossRef]
- Bu, N.; Ueno, N.; Fukuda, O. Monitoring of respiration and heartbeat during sleep using a flexible piezoelectric film sensor and empirical mode decomposition. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 1362–1366. [Google Scholar] [CrossRef]
- Droitcour, A.D.; Seto, T.B.; Park, B.-K.; Yamada, S.; Vergara, A. Non-Contact Respiratory Rate Measurement Validation for Hospitalized Patients. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2009, 4812–4815. [Google Scholar] [CrossRef] [Green Version]
- Procházka, A.; Charvátová, H.; Vyšata, O.; Kopal, J.; Chambers, J. Breathing analysis using thermal and depth imaging camera video records. Sensors 2017, 17, 1408. [Google Scholar] [CrossRef]
- Nam, Y.; Reyes, B.A.; Chon, K.H. Estimation of Respiratory Rates Using the Built-in Microphone of a Smartphone or Headset. IEEE J. Biomed. Health Inform. 2016, 20, 1493–1501. [Google Scholar] [CrossRef]
- Liu, H.; Allen, J.; Zheng, D.; Chen, F. Recent development of respiratory rate measurement technologies. Physiol. Meas. 2019, 40. [Google Scholar] [CrossRef] [Green Version]
- Lynn, L.A.; Curry, J.P. Patterns of unexpected in-hospital deaths: A root cause analysis. Patient Saf. Surg. 2011, 5, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Mihalj, M.; Carrel, T.; Gregoric, I.D.; Andereggen, L.; Zinn, P.O.; Doll, D.; Stueber, F.; Gabriel, R.A.; Urman, R.D.; Luedi, M.M. Telemedicine for preoperative assessment during a COVID-19 pandemic: Recommendations for clinical care. Best Pract. Res. Clin. Anaesthesiol. 2020, 34, 345–351. [Google Scholar] [CrossRef]
- Massaroni, C.; Nicolò, A.; Schena, E.; Sacchetti, M. Remote Respiratory Monitoring in the Time of COVID-19. Front. Physiol. 2020, 11, 1–4. [Google Scholar] [CrossRef]
- Addison, P.S.; Smit, P.; Jacquel, D.; Borg, U.R. Continuous respiratory rate monitoring during an acute hypoxic challenge using a depth sensing camera. J. Clin. Monit. Comput. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massaroni, C.; Nicolò, A.; Sacchetti, M.; Schena, E. Contactless Methods For Measuring Respiratory Rate: A Review. IEEE Sens. J. 2020. [Google Scholar] [CrossRef]
- Benetazzo, F.; Freddi, A.; Monteriù, A.; Longhi, S. Respiratory rate detection algorithm based on RGB-D camera: Theoretical background and experimental results. Healthc. Technol. Lett. 2014, 1, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Dang, T.T.; Huynh, C.; Tran, K.; Dinh, A.; Nguyen, H.D.; Le, Q.M.V. Measuring human respiration rate using depth frames of PrimeSense camera. Int. Conf. Adv. Technol. Commun. 2016, 411–416. [Google Scholar] [CrossRef]
- Procházka, A.; Schätz, M.; Vyšata, O.; Vališ, M. Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis. Sensors 2016, 16, 996. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.Y.; Chen, D.Y.; Yang, C.; Chen, K.J.; Tsai, W.J. Automatic human target detection and remote respiratory rate monitoring. In Proceedings of the 2016 IEEE Second International Conference on Multimedia Big Data (BigMM), Taipei, Taiwan, 20–22 April 2016; pp. 354–356. [Google Scholar] [CrossRef]
- Mateu-Mateus, M.; Guede-Fernandez, F.; Garcia-Gonzalez, M.A.; Ramos-Castro, J.; Fernandez-Chimeno, M. Non-Contact Infrared-Depth Camera-Based Method for Respiratory Rhythm Measurement while Driving. IEEE Access 2019, 7, 152522–152532. [Google Scholar] [CrossRef]
- Rezaei, B.; Lowe, J.; Yee, J.R.; Porges, S.; Ostadabbas, S. Non-Contact Automatic Respiration Monitoring in Restrained Rodents. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4946–4950. [Google Scholar] [CrossRef]
- Yu, M.C.; Wu, H.; Liou, J.L.; Lee, M.S.; Hung, Y.P. Breath and position monitoring during sleeping with a depth camera. In Proceedings of the International Conference on Health Informatics 2012, Algarve, Portugal, 1–4 February 2012; pp. 12–22. [Google Scholar] [CrossRef]
- Yu, M.C.; Wu, H.; Liou, J.L.; Lee, M.S.; Hung, Y.P. Multiparameter Sleep Monitoring Using a Depth Camera. Commun. Comput. Inf. Sci. 2013, 357, 311–325. [Google Scholar] [CrossRef]
- Martinez, M.; Stiefelhagen, R. Breathing Rate Monitoring during Sleep from a Depth Camera under Real-life Conditions. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 1168–1176. [Google Scholar]
- Seppanen, T.M.; Kananen, J.; Noponen, K.; Alho, O.P.; Seppanen, T. Accurate measurement of respiratory airflow waveforms using depth data. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 2015, 2015, 7857–7860. [Google Scholar] [CrossRef]
- Bernacchia, N.; Scalise, L.; Casacanditella, L.; Ercoli, I.; Marchionni, P.; Tomasini, E.P. Non contact measurement of heart and respiration rates based on Kinect TM. In Proceedings of the 2014 IEEE International Symposium on Medical Measurements and Applications, Lisbon, Portugal, 10–11 June 2014; Volume 1, pp. 4–8. [Google Scholar]
- Centonze, F.; Schätz, M.; Procházka, A.; Kuchyňka, J.; Vyšata, O.; Cejnar, P.; Vališ, M. Feature extraction using MS Kinect and data fusion in analysis of sleep disorders. In Proceedings of the 2015 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), Prague, Czech Republic, 29–30 October 2015. [Google Scholar] [CrossRef]
- Cenci, A.; Liciotti, D.; Frontoni, E.; Mancini, A.; Zingaretti, P. Non-Contact Monitoring of Preterm Infants Using RGB-D Camera. In Proceedings of the Volume 9: 2015 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications; ASME: Boston, MA, USA, 2015; p. V009T07A003. [Google Scholar]
- Rehouma, H.; Noumeir, R.; Essouri, S.; Jouvet, P. Quantitative Assessment of Spontaneous Breathing in Children: Evaluation of a Depth Camera System. IEEE Trans. Instrum. Meas. 2019, 69, 4955–4967. [Google Scholar] [CrossRef]
- Al-Naji, A.; Gibson, K.; Lee, S.; Chahl, J. Real Time Apnoea Monitoring of Children Using the Microsoft Kinect Sensor: A Pilot Study. Sensors 2017, 17, 286. [Google Scholar] [CrossRef] [Green Version]
- Aoki, H.; Miyazaki, M.; Nakamura, H.; Furukawa, R.; Sagawa, R.; Kawasaki, H. Non-contact respiration measurement using structured light 3-D sensor. In Proceedings of the 2012 Proceedings of SICE Annual Conference (SICE), Akita, Japan, 20–23 August 2012; pp. 614–618. [Google Scholar]
- Oh, K.; Shin, C.S.; Kim, J.; Yoo, S.K. Level-Set Segmentation-Based Respiratory Volume Estimation Using a Depth Camera. IEEE J. Biomed. Health Inform. 2019, 23, 1674–1682. [Google Scholar] [CrossRef]
- Soleimani, V.; Mirmehdi, M.; Damen, D.; Hannuna, S.; Camplani, M. Remote Pulmonary Function Testing using a Depth Sensor. In Proceedings of the Biomedical Circuits and Systems Conference, Atlanta, GA, USA, 22–24 October 2015; pp. 5–8. [Google Scholar]
- Soleimani, V.; Mirmehdi, M.; Damen, D.; Camplani, M.; Hannuna, S.; Sharp, C.; Dodd, J. Depth-based whole body photoplethysmography in remote pulmonary function testing. IEEE Trans. Biomed. Eng. 2018, 65, 1421–1431. [Google Scholar] [PubMed] [Green Version]
- Sharp, C.; Soleimani, V.; Hannuna, S.; Camplani, M.; Damen, D.; Viner, J.; Mirmehdi, M.; Dodd, J.W. Toward respiratory assessment using depth measurements from a time-of-flight sensor. Front. Physiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Transue, S.; Nguyen, P.; Vu, T.; Choi, M.-H. Real-Time Tidal Volume Estimation Using Iso-surface Reconstruction. In Proceedings of the 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA, 27–29 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 209–218. [Google Scholar]
- Wijenayake, U.; Park, S.Y. Real-time external respiratory motion measuring technique using an RGB-D camera and principal component analysis. Sensors 2017, 17, 1840. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.H.; Golkar, E.; Ashrani, A.A. Respiratory motion tracking using the kinect camera. In Proceedings of the 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 8–10 December 2014; pp. 797–800. [Google Scholar] [CrossRef]
- Nguyen, P.; Transue, S.; Choi, M.H.; Halbower, A.C.; Vu, T. WiKiSpiro: Non-contact respiration volume monitoring during sleep. In Proceedings of the Eighth Wireless of the Students, by the Students, and for the Students Workshop, New York, NY, USA, 3–7 October 2016; pp. 27–29. [Google Scholar] [CrossRef]
- Kempfle, J.; Van Laerhoven, K. Respiration Rate Estimation with Depth Cameras. In Proceedings of the 5th International Workshop on Sensor-Based Activity Recognition and Interaction, Berlin, Germany, 20–21 September 2018; pp. 27–29. [Google Scholar] [CrossRef]
- Harte, J.M.; Golby, C.K.; Acosta, J.; Nash, E.F.; Kiraci, E.; Williams, M.A.; Arvanitis, T.N.; Naidu, B. Chest wall motion analysis in healthy volunteers and adults with cystic fibrosis using a novel Kinect‑based motion tracking system. Med. Biol. Eng. Comput. 2016, 54, 1631–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samir, M.; Golkar, E.; Rahni, A.A.A. Comparison between the KinectTM V1 and KinectTM V2 for respiratory motion tracking. In Proceedings of the 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, 19–21 October 2015; pp. 150–155. [Google Scholar] [CrossRef]
- Ostadabbas, S.; Bulach, C.; Ku, D.N.; Anderson, L.J.; Ghovanloo, M. A Passive Quantitative Measurement of Airway Resistance using Depth Data. Eng. Med. Biol. Soc. IEEE 2014. [Google Scholar] [CrossRef] [Green Version]
- Ernst, F.; Saß, P. Respiratory motion tracking using Microsoft’s Kinect v2 camera. Curr. Dir. Biomed. Eng. 2015, 1, 192–195. [Google Scholar] [CrossRef]
- Yang, C.; Cheung, G.; Chan, K.; Stankovic, V. Sleep monitoring via depth video compression & analysis. In Proceedings of the 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Chengdu, China, 14–18 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6. [Google Scholar]
- Shan, Y.; Li, S.; Chen, T. Respiratory signal and human stress: Non-contact detection of stress with a low-cost depth sensing camera. Int. J. Mach. Learn. Cybern. 2020. [Google Scholar] [CrossRef]
- Kempfle, J.; Van Laerhoven, K. Towards Breathing as a Sensing Modality in Depth-Based Activity Recognition. Sensors 2020, 20, 3884. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.-C.; Liou, J.-L.; Kuo, S.-W.; Lee, M.-S.; Hung, Y.-P. Noncontact respiratory measurement of volume change using depth camera. Annu Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 2012, 2371–2374. [Google Scholar] [CrossRef] [PubMed]
- Prochazka, A.; Vysata, O.; Schatz, M.; Charvatova, H.; Araujo, C.P.S.; Geman, O.; Marik, V. Video processing and 3D modelling of chest movement using MS Kinect depth sensor. In Proceedings of the 2016 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), Reggio Calabria, Italy, 27–28 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Aoki, H.; Nakamura, H.; Fumoto, K.; Nakahara, K.; Teraoka, M. Basic study on non-contact respiration measurement during exercise tolerance test by using kinect sensor. In Proceedings of the 2015 IEEE/SICE International Symposium on System Integration (SII), Nagoya, Japan, 11–13 December 2015; pp. 217–222. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, M.; Li, Q.; Zhang, X.P.; Zhai, G.; Yao, N. Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner. arXiv 2020, arXiv:2002.05534. [Google Scholar]
- Wang, Y.; Hu, M.; Zhou, Y.; Li, Q.; Yao, N.; Zhai, G.; Zhang, X.-P.; Yang, X. Unobtrusive and Automatic Classification of Multiple People’s Abnormal Respiratory Patterns in Real Time using Deep Neural Network and Depth Camera. IEEE Internet Things J. 2020, 1. [Google Scholar] [CrossRef]
- Delimayanti, M.K.; Purnama, B.; Nguyen, N.G.; Mahmudah, K.R.; Kubo, M.; Kakikawa, M.; Yamada, Y.; Satou, K. Clustering and classification of breathing activities by depth image from kinect. In Proceedings of the 10th International Conference on Bioinformatics Models, Methods and Algorithms, Prague, Czech Republic, 22–24 February 2019; pp. 264–269. [Google Scholar] [CrossRef]
- Niérat, M.-C.; Dube, B.-P.; Llontop, C.; Bellocq, A.; Ben Mohamed, L.L.; Rivals, I.; Straus, C.; Similowski, T.; Laveneziana, P. Measuring ventilatory activity with structured light plethysmography (SLP) reduces instrumental observer effect and preserves tidal breathing variability in healthy and COPD. Front. Physiol. 2017, 8, 316. [Google Scholar] [CrossRef] [Green Version]
- Schätz, M.; Procházka, A.; Kuchyňka, J.; Vyšata, O. Sleep apnea detection with polysomnography and depth sensors. Sensors 2020, 20, 1360. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Cheung, G.; Stankovic, V.; Chan, K.; Ono, N. Sleep Apnea Detection via Depth Video and Audio Feature Learning. IEEE Trans. Multimed. 2017, 19, 822–835. [Google Scholar] [CrossRef] [Green Version]
- Morris, T.A.; Gay, P.C.; MacIntyre, N.R.; Hess, D.R.; Hanneman, S.K.; Lamberti, J.P.; Doherty, D.E.; Chang, L.; Seckel, M.A. Respiratory Compromise as a New Paradigm for the Care of Vulnerable Hospitalized Patients. Respir. Care 2017, 62, 497–512. [Google Scholar] [CrossRef] [Green Version]
- Willens, J.S.; Jungquist, C.R.; Cohen, A.; Polomano, R. ASPMN Survey-Nurses’ Practice Patterns Related to Monitoring and Preventing Respiratory Depression. Pain Manag. Nurs. 2013, 14, 60–65. [Google Scholar] [CrossRef]
- Keeling, J.E.; Cudjoe, L.; Hawksworth, J.; Drake, T.D. Remote Visual Monitoring During a Pandemic. J. Nurs. Meas. 2020, 28, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and Exercise. Sensors 2020, 20, 6396. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addison, A.P.; Addison, P.S.; Smit, P.; Jacquel, D.; Borg, U.R. Noncontact Respiratory Monitoring Using Depth Sensing Cameras: A Review of Current Literature. Sensors 2021, 21, 1135. https://doi.org/10.3390/s21041135
Addison AP, Addison PS, Smit P, Jacquel D, Borg UR. Noncontact Respiratory Monitoring Using Depth Sensing Cameras: A Review of Current Literature. Sensors. 2021; 21(4):1135. https://doi.org/10.3390/s21041135
Chicago/Turabian StyleAddison, Anthony P., Paul S. Addison, Philip Smit, Dominique Jacquel, and Ulf R. Borg. 2021. "Noncontact Respiratory Monitoring Using Depth Sensing Cameras: A Review of Current Literature" Sensors 21, no. 4: 1135. https://doi.org/10.3390/s21041135
APA StyleAddison, A. P., Addison, P. S., Smit, P., Jacquel, D., & Borg, U. R. (2021). Noncontact Respiratory Monitoring Using Depth Sensing Cameras: A Review of Current Literature. Sensors, 21(4), 1135. https://doi.org/10.3390/s21041135