Changes of Corneal Biomechanical Properties upon Exclusive Ytt-/Sr-90 Irradiation of Pterygium
<p>Islets of corneal epithelial cells arranged within the fibrous structures of the pterygium after beta irradiation.</p> "> Figure 2
<p>Confocal microscope images of a pterygium within the surface at 0 µm, through layers in deeper positions at 80 and 100 µm to the sclera at 120 µm.</p> "> Figure 3
<p>Stronium-/Yttrium-90 beta-irradiation decay scheme.</p> "> Figure 4
<p>Topographical, schematic illustration shows the location on the nasal corneal limbus where the radiation applicator was placed. Note the cornea flattens in the area of the pterygium.</p> "> Figure 5
<p>The diagram shows the penetration depth of beta radiation in the tissue. It can be seen that only 6% of the irradiation penetrates 4 mm, i.e., to the equator of the lens.</p> "> Figure 6
<p>A Pentacam–Scheimpflug image (inverted colours) shows a nasal pterygium in form of corneal thickening (arrow) of the left eye of a 62-year-old male with a horizontal length of 3.5 mm before irradiation. By merging 25 Scheimpflug images, the 3D model of the anterior eye segment and all other calculations are generated.</p> "> Figure 7
<p>A typical Pentacam display of the same nasal pterygium shown in <a href="#sensors-21-00975-f005" class="html-fig">Figure 5</a>. Clockwise starting from top left: anterior sagittal curvature map, anterior elevation map, posterior elevation map, corneal thickness map (pachymetry). The pterygium thickens and flattens the peripheral nasal cornea and thus reduces local refractive power.</p> "> Figure 8
<p>Zernike polynomials as displayed by the Pentacam software. The red framed aberrations increased significantly after exclusive Strontium-/Yttrium-90 beta irradiation of primary pterygia. The majority of HOAs (higher order aberrations) of the 3rd order, but still the overall RMS (root mean square) for HOAs of the 3rd to 6th order showed no statistical significance.</p> "> Figure 9
<p>Shown is the regression of the pterygium after Sr-/Ytt-90 beta irradiation. The red arrows indicate where the border of the pterygium was before irradiation and the yellow arrows mark the border 12 months after irradiation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Axenfeld, T. Lehrbuch der Augenheilkunde, 13th ed.; von Axenfeld, T., von Pau, H., Eds.; G. Fischer: Stuttgart/Jena, Germany; New York, NY, USA, 1992. [Google Scholar]
- Cameron, M.E. Histology of pterygium: An electron microscopic study. Br. J. Ophthalmol. 1983, 67, 604–608. [Google Scholar] [CrossRef] [Green Version]
- Seegenschmiedt, M.H.; Micke, O. Radiotherapie bei Gutartigen Erkrankungen; Diplodocus Verlag: Münster, Germany, 2006; pp. 45–70. [Google Scholar]
- Liu, L.; Wu, J.; Geng, J.; Yuan, Z.; Huang, D. Geographical prevalence and risk factors for pterygium: A systematic review and meta-analysis. BMJ Open 2013, 3, e003787. [Google Scholar] [CrossRef]
- Rezvan, F.; Khabazkhoob, M.; Hooshmand, E.; Yekta, A.; Saatchi, M.; Hashemi, H. Prevalence and risk factors of pterygium: A systematic review and meta-analysis. Surv. Ophthalmol. 2018, 63, 719–735. [Google Scholar] [CrossRef]
- Saw, S.M.; Tan, D. Pterygium: Prevalence, demography and risk factors. Ophthalmic Epidemiol. 1999, 6, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Moran, D.J.; Hollows, F.C. Pterygium and ultraviolet radiation: A positive correlation. Br. J. Ophthalmol. 1984, 68, 343–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, J.C.; Yang, W.; Bradley, R.H.; Reid, T.W.; Schwab, I.R. The science of pterygia. Br. J. Ophthalmol. 2010, 94, 815–820. [Google Scholar] [CrossRef] [PubMed]
- McCarty, C.A.; Fu, C.L.; Taylor, H.R. Epidemiology of pterygium in Victoria, Australia. Br. J. Ophthalmol. 2000, 84, 289–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detorakis, E.T.; Sourvinos, G.; Tsamparlakis, J.; Spandidos, D.A. Evaluation of loss of heterozygosity and microsatellite instability in human pterygium: Clinical correlations. Br. J. Ophthalmol. 1998, 82, 1324–1328. [Google Scholar] [CrossRef] [Green Version]
- Detorakis, E.T.; Sourvinos, G.; Spandidos, D.A. Detection of herpes simplex virus and human papilloma virus in ophthalmic pterygium. Cornea 2001, 20, 164–167. [Google Scholar] [CrossRef]
- Zhang, L.M.; Lu, Y.; Gong, L. Pterygium Is Related to Short Axial Length. Cornea 2020, 39, 140–145. [Google Scholar] [CrossRef]
- Coroneo, M.T.; Di Girolamo, N.; Wakefield, D. The pathogenesis of pterygia. Curr. Opin. Ophthalmol. 1999, 10, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Waller, S.G.; Adamis, A.P. Pterygium. In Duane’s Clinical Ophthalmology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1994; Volume 6, Chapter 35; pp. 1–13. [Google Scholar]
- Kria, L.; Ohira, A.; Amemiya, T. Immunohistochemical localization of basic fibroblast growth factor, platelet derived growth factor, transforming growth factor-beta and tumor necrosis factor-alpha in the pterygium. Acta Histochem. 1996, 98, 195–201. [Google Scholar] [CrossRef]
- Nakagami, T.; Watanabe, I.; Murakami, A.; Okisaka, S.; Ebihara, N. Expression of stem cell factor in pterygium. Jpn. J. Ophthalmol. 2000, 44, 193–197. [Google Scholar] [CrossRef]
- Wong, Y.W.; Chew, J.; Yang, H.; Tan, D.T.; Beuerman, R. Expression of insulin-like growth factor binding protein-3 in pterygium tissue. Br. J. Ophthalmol. 2006, 90, 769–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, E.C.; Rocha, E.M.; Arruda, G.V. Comparison among adjuvant treatments for primary pterygium: A network meta-analysis. Br. J. Ophthalmol. 2018, 102, 748–756. [Google Scholar] [CrossRef]
- Willner, J.; Flentje, M.; Lieb, W. Soft X-ray therapy of recurrent pterygium—An alternative to 90Sr eye applicators. Strahlenther. Onkol. 2001, 177, 404–409. [Google Scholar] [CrossRef]
- Alvaro, M.E. Les résultats du traitement du ptérygion par la chirurgie combinée à l’irradiation bêta [Results of treatment for pterygium by surgery combined with beta irradiation]. Bull. Mem. Soc. Fr. Ophtalmol. 1953, 66, 184–194. [Google Scholar]
- Murube, J. Pterygium: Its treatment with beta therapy. Ocul. Surf. 2009, 7, 3–9. [Google Scholar] [CrossRef]
- Pajic, B.; Pallas, A.; Aebersold, D.; Gruber, G.; Greiner, R.H. Prospective study on exclusive, nonsurgical strontium-/yttrium-90 irradiation of pterygia. Strahlenther. Onkol. 2004, 180, 510–516. [Google Scholar] [CrossRef]
- Pajic, B.; Greiner, R.H. Long term results of non-surgical, exclusive strontium-/yttrium-90 beta-irradiation of pterygia. Radiother. Oncol. 2005, 74, 25–29. [Google Scholar] [CrossRef]
- Vastardis, I.; Pajic, B.; Greiner, R.H.; Pajic-Eggspuehler, B.; Aebersold, D.M. Prospective study of exclusive strontium-/yttrium-90 beta-irradiation of primary and recurrent pterygia with no prior surgical excision. Clinical outcome of long-term follow-up. Strahlenther. Onkol. 2009, 185, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Gumus, K.; Erkilic, K.; Topaktas, D.; Colin, J. Effect of pterygia on refractive indices, corneal topography, and ocular aberrations. Cornea 2011, 30, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Minami, K.; Tokunaga, T.; Okamoto, K.; Miyata, K.; Oshika, T. Influence of pterygium size on corneal higher-order aberration evaluated using anterior-segment optical coherence tomography. BMC Ophthalmol. 2018, 18, 166. [Google Scholar] [CrossRef] [PubMed]
- Vanathi, M.; Goel, S.; Ganger, A.; Agarwal, T.; Dada, T.; Khokhar, S. Corneal tomography and biomechanics in primary pterygium. Int. Ophthalmol. 2018, 38, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Pajic, B.; Aebersold, D.M.; Eggspuehler, A.; Theler, F.R.; Studer, H.P. Biomechanical Modeling of Pterygium Radiation Surgery: A Retrospective Case Study. Sensors 2017, 17, 1200. [Google Scholar] [CrossRef] [Green Version]
- Mrdja, D.; Bikit, K.; Bikit, I.; Slivka, J.; Forkapic, S.; Knezevic, J. Monte Carlo simulation of beta particle induced bremmstrahlung doses. J. Radiol. Prot. 2018, 38, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Friedell, H.L.; Thomas, C.I.; Krohmer, J.S. An evaluation of the clinical use of a strontium 90 beta-ray applicator with a review of the underlying principles. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1954, 71, 25–39. [Google Scholar]
- Sharma, S.C. Strontium-90 Eye Application. Med. Dosim. 1989, 14, 229–230. [Google Scholar] [CrossRef]
- McAlinden, C.; Schwiegerling, J.; Khadka, J.; Pesudovs, K. Corneal aberrations measured with a high-resolution Scheimpflug tomographer: Repeatability and reproducibility. J. Cataract Refract. Surg. 2020, 46, 581–590. [Google Scholar] [CrossRef]
- Applegate, R.A.; Sarver, E.J.; Khemsara, V. Are all aberrations equal? J. Refract. Surg. 2002, 18, S556–S562. [Google Scholar] [CrossRef]
- Lin, A.; Stern, G. Correlation between pterygium size and induced corneal astigmatism. Cornea 1998, 17, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Bahrassa, F.; Datta, R. Postoperative beta radiation treatment of pterygium. Int. J. Radiat. Oncol. Biol Phys. 1983, 9, 679–684. [Google Scholar] [CrossRef]
- Han, S.B.; Jeon, H.S.; Kim, M.; Lee, S.J.; Yang, H.K.; Hwang, J.M.; Kim, K.G.; Hyon, J.Y.; Wee, W.R. Quantification of Astigmatism Induced by Pterygium Using Automated Image Analysis. Cornea 2016, 35, 370–376. [Google Scholar] [CrossRef]
- Kampitak, K.; Leelawongtawun, W.; Leeamornsiri, S.; Suphachearaphan, W.; Thitiwichienlert, S. A Comparative Study of Higher order Aberrations between Pterygium and Non-Pterygium Eyes. J. Med. Assoc. Thai. 2016, 99 (Suppl. 4), S178–S181. [Google Scholar] [PubMed]
- Ozgurhan, E.B.; Kara, N.; Cankaya, K.I.; Akcay, B.I.S.; Kurt, T.; Yilmaz, I.; Demirok, A. Corneal Wavefront Aberrations after Primary and Recurrent Pterygium Surgery. Eye Contact Lens 2015, 41, 378–381. [Google Scholar] [CrossRef]
- Pesudovs, K.; Figueiredo, F.C. Corneal first surface wavefront aberrations before and after pterygium surgery. J. Refract. Surg. 2006, 22, 921–925. [Google Scholar] [CrossRef] [Green Version]
- Razmjoo, H.; Vaezi, M.H.; Peyman, A.; Koosha, N.; Mohammadi, Z.; Alavirad, M. The effect of pterygium surgery on wavefront analysis. Adv. Biomed. Res. 2014, 3, 196. [Google Scholar] [CrossRef]
- Viani, G.A.; Stefano, E.J.; De Fendi, L.I.; Fonseca, E.C. Long-term results and prognostic factors of fractionated strontium-90 eye applicator for pterygium. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 1174–1179. [Google Scholar] [CrossRef]
- Kal, H.B.; Veen, R.E.; Jürgenliemk-Schulz, I.M. Dose-effect relationships for recurrence of keloid and pterygium after surgery and radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 245–251. [Google Scholar] [CrossRef]
- Ali, A.M.; Thariat, J.; Bensadoun, R.J.; Thyss, A.; Rostom, Y.; El-Haddad, S.; Gérard, J.P. The role of radiotherapy in the treatment of pterygium: A review of the literature including more than 6000 treated lesions. Cancer Radiother. 2011, 15, 140–147. [Google Scholar] [CrossRef]
- Mootha, V.V.; Pingree, M.; Jaramillo, J. Pterygia with deep corneal changes. Cornea 2004, 23, 635–638. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigendinger, F.; Aebersold, D.M.; Cvejic, Z.; Pajic, B. Changes of Corneal Biomechanical Properties upon Exclusive Ytt-/Sr-90 Irradiation of Pterygium. Sensors 2021, 21, 975. https://doi.org/10.3390/s21030975
Rigendinger F, Aebersold DM, Cvejic Z, Pajic B. Changes of Corneal Biomechanical Properties upon Exclusive Ytt-/Sr-90 Irradiation of Pterygium. Sensors. 2021; 21(3):975. https://doi.org/10.3390/s21030975
Chicago/Turabian StyleRigendinger, Fritz, Daniel M. Aebersold, Zeljka Cvejic, and Bojan Pajic. 2021. "Changes of Corneal Biomechanical Properties upon Exclusive Ytt-/Sr-90 Irradiation of Pterygium" Sensors 21, no. 3: 975. https://doi.org/10.3390/s21030975
APA StyleRigendinger, F., Aebersold, D. M., Cvejic, Z., & Pajic, B. (2021). Changes of Corneal Biomechanical Properties upon Exclusive Ytt-/Sr-90 Irradiation of Pterygium. Sensors, 21(3), 975. https://doi.org/10.3390/s21030975