Gear Shape Measurement Potential of Laser Triangulation and Confocal-Chromatic Distance Sensors
<p>Optical position measuring principles for gear shape measurements consisting of (<b>a</b>) an optical distance sensor (<span class="html-italic">x</span><sub>s</sub>, <span class="html-italic">y</span><sub>s</sub>) in combination with a rotary table (<span class="html-italic">x’</span>, <span class="html-italic">y’</span>) which continuously measures the tooth contour of a gear (<span class="html-italic">x</span>, <span class="html-italic">y</span>) as a function of the rotation angle <span class="html-italic">α</span> and (<b>b</b>) an optical sensor mounted on a linear unit to a measuring unit (<span class="html-italic">x</span><sub>s</sub>, <span class="html-italic">y</span><sub>s</sub>) for laterally scanning the tooth contour of a gear (<span class="html-italic">x</span>, <span class="html-italic">y</span>).</p> "> Figure 2
<p>Geometric model of a nonmodified involute gear for calculating the plumb line distance <span class="html-italic">d</span><sub>plu,i</sub> between the measured and the nominal geometry based on a measured actual point <span class="html-italic">P</span><sub>a,i</sub> on tooth <span class="html-italic">Z</span>, the base point <span class="html-italic">P</span><sub>i</sub> of the nominal geometry for the plumb line distance and the position parameters <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mi mathvariant="normal">i</mi> </msub> <mo>,</mo> <msub> <mi>θ</mi> <mi mathvariant="normal">z</mi> </msub> <mo>,</mo> <msub> <mi>ψ</mi> <mi mathvariant="normal">b</mi> </msub> <mo>,</mo> <mover accent="true"> <mi>T</mi> <mo>→</mo> </mover> <mo>,</mo> <msub> <mi>φ</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>r</mi> <mrow> <mi mathvariant="normal">I</mi> <mo>,</mo> <mi mathvariant="normal">i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="sans-serif">γ</mi> <mi mathvariant="normal">i</mi> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>n</mi> <mo>→</mo> </mover> <mi mathvariant="normal">i</mi> </msub> </mrow> </semantics></math> in the workpiece coordinate system. The plumb line distance between the measuring point and the nominal geometry of the tooth flank is displayed enlarged. <a href="#sensors-21-00937-f002" class="html-fig">Figure 2</a> is modified according to [<a href="#B20-sensors-21-00937" class="html-bibr">20</a>].</p> "> Figure 3
<p>Procedure for determining and assessing the gear shape standard measurement uncertainty.</p> "> Figure 4
<p>Measuring objects for evaluating the potential of the triangulation sensor and confocal-chromatic sensor for gear shape measurements and for investigating the measurement deviation contributions through the tilt angle between the gear surface normal and the sensor axis, the varying surface curvature, and gear surface properties. (<b>a</b>) shows an involute tooth flank standard with a nominal geometry with a normal module of 10.64117 mm, 20 teeth, and a base circle diameter of 199.99 mm. (<b>b</b>) shows a spur gear with involute profile and a nominal geometry with a normal module of 3.75 mm, 26 teeth and a base circle radius of 91.62 mm. In addition, the measuring spot and multiple reflections of a triangulation measurement are visible on the spur gear.</p> "> Figure 5
<p>Experimental set-up of the optical position measurement approach for the gear shape measurement with a linear unit for laterally scanning the tooth flank of a tooth flank standard and using the confocal-chromatic sensor as an example. An additional linear unit allows the height of the optical sensor to be adjusted. To examine the influence of multiple reflections, the tooth flank standard is exchanged with a spur gear.</p> "> Figure 6
<p>Principle sketch for the theoretical estimation of the distance variation ∆<span class="html-italic">d</span> within the measuring spot with a diameter of <span class="html-italic">w</span><sub>d</sub> of the optical distance sensors resulting from the tilt angle <span class="html-italic">τ</span> between tooth surface normal and sensor axis and the curvature of the tooth flank. (<b>a</b>) shows the influence of the tilt angle simplified on a flat surface. (<b>b</b>) shows the influence of the curvature of the tooth flank for a gear geometry corresponding to the tooth flank standard.</p> "> Figure 7
<p>Results of one gear shape measurement with the triangulation sensor and confocal-chromatic sensor on the involute tooth flank standard, respectively. (<b>a</b>) shows the transformed triangulation measurement points as blue dots in comparison to the reference geometry of the tooth flank as a black line in a common coordinate system. Note that the x- and <span class="html-italic">y</span>-axis are scaled differently. (<b>b</b>) shows the plumb line distances between the reference and the measured geometry of the tooth flank plotted over the x-positions of the laser triangulation measurement points. (<b>c</b>) illustrates the transformed confocal-chromatic measurement points as blue dots compared to the reference geometry of the tooth flank as a black line in a common coordinate system. (<b>d</b>) illustrates the plumb line distances between the reference and measured geometry of the tooth flank depending on the x-positions of the confocal-chromatic measurement points.</p> "> Figure 8
<p>Dependence of the determined plumb line distances of (<b>a</b>) the triangulation gear shape measurements on the tooth flank standard and (<b>b</b>) the confocal-chromatic gear shape measurements on the tooth flank standard on the absolute values of the estimated tilt angles between the gear surface normal and the sensor axis. The crosses represent the tilt angles in the direction of the root (mathematically negative) and the diamonds represent the tilt angles in the direction of the tip (mathematically positive). From the symmetrical behavior of the plumb line distances it can be seen that no separate influence of the curvature can be observed within the scattering and that a significant dependence on the surface tilt can be expected.</p> "> Figure 9
<p>Remaining deviations of the corrected comparison triangulation gear shape measurements as a function of the x-component of the measurement point. The measurements are performed at different heights on the tooth flank standard to study the influence of the local topography of the surface on the measurement deviation.</p> "> Figure 10
<p>Remaining deviations of the corrected comparison measurements of the gear shape using the confocal-chromatic sensor as a function of the x-component of the measurement point. A second <span class="html-italic">x</span>-axis illustrates the dependency of the plumb line distances of the tilt angles. The measurements are performed at different heights on the tooth flank standard to study the influence of the local topography of the surface on the measurement deviation.</p> "> Figure 11
<p>Plumb line distances of the comparison measurements of the gear shape using the triangulation sensor. The blue crosses present the measurement without the coated adjacent tooth. The red crosses are the results of the measurement with the coated adjacent.</p> "> Figure 12
<p>Plumb line distances of the comparison measurements of the gear shape using the triangulation sensor. The blue crosses present the measurement without the coated adjacent tooth. The red crosses are the results of the measurement with the coated adjacent.</p> ">
Abstract
:1. Introduction
1.1. Motivation
1.2. State of the Art
1.3. Aim and Structure of the Article
2. Measurement Principle
2.1. Gear Shape Measurement Principle Using Optical Position Measurements
2.2. Assessment of the Gear Shape Standard Measurement Uncertainty
3. Experimental Set-Up
3.1. Measurement Objects
3.2. Measurement Arrangement
3.3. Specifications of the Optical Distance Sensors
3.4. Experimental Test Series
4. Results
4.1. Tooth Flank Standard Measurements
4.1.1. Systematic Deviations
4.1.2. Random Deviations
4.2. Spur Gear Measurements
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Organization for Standardization. ISO1328-1: Cylindrical Gears—ISO System of Flank Tolerance Classification—Part 1: Definitions and Allowable Values of Deviations Relevant to Flanks of Gear Teeth; ISO: Geneva, Switzerland, 2013. [Google Scholar]
- Balzer, F.; Steffens, N.; Stein, M.; Kniel, K. Traceable measurement of large gears with micron accuracy: A mandatory basis for reliable wind energy systems. In Proceedings of the 59th IWK, Ilmenau Scientific Colloquium, Engineering for a Changing World, Ilmenau, Germany, 11–15 September 2017; Volume 59. [Google Scholar]
- Chen, Y.C.; Chen, J.Y. Optical Inspection System for Gear Tooth Surfaces Using a Projection Moiré Method. Sensors 2019, 19, 1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiemann, A.K.; Stein, M.; Kniel, K. Traceable metrology for large involute gears. Precis. Eng. 2019, 55, 330–338. [Google Scholar] [CrossRef]
- Peggs, G.N.; Maropoulos, P.G.; Hughes, E.B.; Forbes, A.B.; Robson, S.; Ziebart, M.; Muralikrishnan, B. Recent developments in large-scale dimensional metrology. Proc. Inst. Mech. Eng. B 2009, 223, 571–595. [Google Scholar] [CrossRef]
- Franceschini, F.; Galetto, M.; Maisano, D.; Mastrogiacomo, L. Large-scale dimensional metrology (LSDM): From tapes and theodolites to multi-sensor systems. Int. J. Precis. Eng. Manuf. 2014, 15, 1739–1758. [Google Scholar] [CrossRef]
- Balzer, F.; Schäfer, M.; Lindner, I.; Günther, A.; Stöbener, D.; Westerkamp, J. Recent advances in optical gear measurements—A new approach for fast measurements of large gears. In Proceedings of the 6th International Conference on Gears, Garching, VDI-Berichte, Garching, Germany, 5–7 October 2015; VDI Wissensforum GmbH: Düsseldorf, Germany, 2015; Volume 2255, pp. 655–666. [Google Scholar]
- Guo, X.; Shi, Z.; Yu, B.; Zhao, B.; Li, K.; Sun, Y. 3D measurement of gears based on a line structured light sensor. Precis. Eng. 2020, 61, 160–169. [Google Scholar] [CrossRef]
- Younes, M.; Khalil, A.M.; Damir, M. Automatic measurement of spur gear dimensions using laser light. Part 2: Measurement of flank profile. Opt. Eng. 2005, 44, 103603. [Google Scholar] [CrossRef]
- Auerswald, M.M.; von Freyberg, A.; Fischer, A. Laser line triangulation for fast 3D measurements on large gears. Int. J. Adv. Manuf. Technol. 2019, 100, 2423–2433. [Google Scholar] [CrossRef]
- Peters, J.; Goch, G.; Günther, A. Helical gear measurement using structured light. In Proceedings of the XVI IMEKO World Congress, Wien, Austria, 25–28 September 2000; pp. 227–230. [Google Scholar]
- Meeß, K.; Kästner, M.; Seewig, J. Verringerung und Abschätzung der Messunsicherheit bei der optischen Verzahnungsmessung mit Streifenprojektion. TM—Tech. Mess. 2006, 73, 603–610. [Google Scholar]
- Sciammarella, C.A.; Lamberti, L.; Sciammarella, F.M. High-accuracy contouring using projection moiré. Opt. Eng. 2005, 44, 093605. [Google Scholar] [CrossRef]
- Fang, S.; Zhu, X.; Yang, P.; Cai, Q.; Komori, M.M.; Kubo, A. Analysis and compensation method for installation error in measuring gear tooth flank with laser interferometry. Opt. Eng. 2014, 53, 084111. [Google Scholar] [CrossRef]
- Micro-Epsilon. More Precision—Confocal Chromatic Sensor System; Micro-Epsilon: Ortenburg, Germany, 2020. [Google Scholar]
- Pillarz, M.; von Freyberg, A.; Fischer, A. Determination of the mean base circle radius of gears by optical multi-distance measurements. J. Sens. Sens. Syst. 2020, 9, 273–282. [Google Scholar] [CrossRef]
- Günther, A.; Peters, J.; Goch, G. Flächenhafte numerische Beschreibung, Ausrichtung und Auswertung von Zylinderrädern (3D-Surface-like Numerical Description, Alignment, and Evaluation of Involute Cylindrical Gears). TM Tech. Mess. Plattf. Methoden Syst. Anwend. Messtech. 2001, 68, 160. [Google Scholar]
- Goch, G. Gear Metrology. CIRP Ann. 2003, 52, 659–695. [Google Scholar] [CrossRef]
- Stöbener, D.; Freyberg, A.; Fuhrmann, M.; Goch, G. Characterisation of gear distortions with areal parameters. In Proceedings of the 3rd International Conference on Distortion Engineering, Bremen, Germany, 14–16 September 2011; pp. 147–154. [Google Scholar]
- Pillarz, M.; von Freyberg, A.; Fischer, A. Gear Shape Parameter Measurement Using a Model-Based Scanning Multi-Distance Measurement Approach. Sensors 2020, 20, 3910. [Google Scholar] [CrossRef] [PubMed]
- Stöbener, D.; von Freyberg, A.; Fuhrmann, M.; Goch, G. Areal parameters for the characterisation of gear distortions. Mater. Werkst. 2012, 43, 120–124. [Google Scholar] [CrossRef]
Number of Teeth | Normal Module in mm | Base Circle Diameter in mm | |
---|---|---|---|
tooth flank standard | 20 | 10.64117 | 199.99 |
spur gear | 26 | 3.75 | 91.62 |
Laser Triangulation Sensor | Confocal-Chromatic Sensor | |
---|---|---|
measuring range | 50 mm | 10 mm |
acceptance angle | ±30° | ±17° |
light spot diameter wd | 55–570 µm | 16 µm |
linearity error | ±30 µm | ±2.5 µm |
reproducibility | ±2 µm | ±0.3 µm |
Laser Triangulation Sensor (Mid-Range) wd = 55 µm | Confocal-Chromatic Sensor wd = 16 µm | |
---|---|---|
∆dtilt in µm | 17.9 | 5.2 |
∆dcurvature in µm | 0.04 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pillarz, M.; von Freyberg, A.; Stöbener, D.; Fischer, A. Gear Shape Measurement Potential of Laser Triangulation and Confocal-Chromatic Distance Sensors. Sensors 2021, 21, 937. https://doi.org/10.3390/s21030937
Pillarz M, von Freyberg A, Stöbener D, Fischer A. Gear Shape Measurement Potential of Laser Triangulation and Confocal-Chromatic Distance Sensors. Sensors. 2021; 21(3):937. https://doi.org/10.3390/s21030937
Chicago/Turabian StylePillarz, Marc, Axel von Freyberg, Dirk Stöbener, and Andreas Fischer. 2021. "Gear Shape Measurement Potential of Laser Triangulation and Confocal-Chromatic Distance Sensors" Sensors 21, no. 3: 937. https://doi.org/10.3390/s21030937
APA StylePillarz, M., von Freyberg, A., Stöbener, D., & Fischer, A. (2021). Gear Shape Measurement Potential of Laser Triangulation and Confocal-Chromatic Distance Sensors. Sensors, 21(3), 937. https://doi.org/10.3390/s21030937