Quantitative Evaluation of the Effect of Temperature on Magnetic Barkhausen Noise
<p>(<b>a</b>) The magnetic Barkhausen noise (MBN) experimental set-up; (<b>b</b>) The schematic diagram of the Barkhausen sensor.</p> "> Figure 2
<p>The thermally induced stress structure.</p> "> Figure 3
<p>Hysteresis loops of 0.50 mm thickness non-oriented (NO) electrical steel at various temperatures. The inset shows an enlarged view of the negative tips of hysteresis loops.</p> "> Figure 4
<p>(<b>a</b>) Illustration of raw Barkhausen bursts and the corresponding root-mean-square (RMS) envelope. (<b>b</b>) The simulated and measured MBN signal envelops for 0.5 mm thickness NO electrical steel under various temperatures.</p> "> Figure 5
<p>(<b>a</b>) The reciprocal MBN peak amplitude as a function of temperature measured from 0.5 mm thickness NO electrical steel. (<b>b</b>) Dependence of reciprocal MBN peak value on temperature approximated with a linear function.</p> "> Figure 6
<p>The approximation of reciprocal MBN peak amplitude as a parabolic function of temperature.</p> "> Figure 7
<p>Dependence of reciprocal MBN peak value on temperature approximated with linear functions.</p> "> Figure A1
<p>The magnetostriction as a function of magnetization for the 0.5 mm thickness NO electrical steel.</p> ">
Abstract
:1. Introduction
2. The Effect of Temperature on Magnetic Barkhausen Noise
2.1. The Model of the Temperature Dependence of Hysteresis
2.2. The Magnetomechanical Hysteresis Model
2.3. The Effect of Temperature on Magnetic Barkhausen Noise
2.3.1. Case 1: The Direct Effect of Temperature Only
2.3.2. Case 2: The Combined Effects of Temperature and Thermal Stress
3. Experiments
3.1. The MBN Experiments Considering the Direct Effect Only
3.2. The MBN Experiments Considering the Combined Effects
4. Results and Discussion
4.1. The MBN Experiments Considering the Direct Effect Only
4.2. The MBN Experiments Considering the Combined Effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Capó-Sánchez, J.; Pérez-Benitez, J.; Padovese, L. Analysis of the stress dependent magnetic easy axis in ASTM 36 steel by the magnetic Barkhausen noise. NDT E Int. 2007, 40, 168–172. [Google Scholar] [CrossRef]
- Liu, X.; Ruihuan, Z.; Bin, W.; Cunfu, H. Quantitative Prediction of Surface Hardness in 12CrMoV Steel Plate Based on Magnetic Barkhausen Noise and Tangential Magnetic Field Measurements. J. Nondestruct. Eval. 2018, 37, 38. [Google Scholar] [CrossRef]
- Yelbay, H.I.; Cam, I.; Gür, C.H. Non-destructive determination of residual stress state in steel weldments by Magnetic Barkhausen Noise technique. NDT E Int. 2010, 43, 29–33. [Google Scholar] [CrossRef]
- Zerovnik, P.; Grum, J.; Žerovnik, G. Determination of Hardness and Residual-Stress Variations in Hardened Surface Layers With Magnetic Barkhausen Noise. IEEE Trans. Magn. 2009, 46, 899–904. [Google Scholar] [CrossRef]
- Ding, S.; Tian, G.; Sutthaweekul, R. Non-destructive hardness prediction for 18CrNiMo7-6 steel based on feature selection and fusion of Magnetic Barkhausen Noise. NDT E Int. 2019, 107, 102138. [Google Scholar] [CrossRef]
- He, Y.; Mehdi, M.; Hilinski, E.J.; Edrisy, A. Through-process characterization of local anisotropy of Non-oriented electrical steel using magnetic Barkhausen noise. J. Magn. Magn. Mater. 2018, 453, 149–162. [Google Scholar] [CrossRef]
- Maciusowicz, M.; Psuj, G. Time-Frequency Analysis of Barkhausen Noise for the Needs of Anisotropy Evaluation of Grain-Oriented Steels. Sensors 2020, 20, 768. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Ji, X.; Yan, X.; Zhu, L.; Wang, H.; Tian, G.; Yao, E. Investigation of temperature effect of stress detection based on Barkhausen noise. Sens. Actuators A Phys. 2013, 194, 232–239. [Google Scholar] [CrossRef]
- Guo, L.; Shu, D.; Yin, L.; Chen, J.; Qi, X. The effect of temperature on the average volume of Barkhausen jump on Q235 carbon steel. J. Magn. Magn. Mater. 2016, 407, 262–265. [Google Scholar] [CrossRef]
- Altpeter, I. Nondestructive evaluation of cementite content in steel and white cast iron using inductive Barkhausen noise. J. Nondestruct. Eval. 1996, 15, 45–60. [Google Scholar] [CrossRef]
- Jiles, D.C.; Sipahi, L.B.; Williams, G. Modeling of micromagnetic Barkhausen activity using a stochastic process extension to the theory of hysteresis. J. Appl. Phys. 1993, 73, 5830–5832. [Google Scholar] [CrossRef] [Green Version]
- Lo, C.; Lee, S.; Li, L.; Kerdus, L.; Jiles, D. Modeling stress effects on magnetic hysteresis and Barkhausen emission using a hysteretic-stochastic model. IEEE Trans. Magn. 2002, 38, 2418–2420. [Google Scholar] [CrossRef]
- Mierczak, L.; Jiles, D.C.; Fantoni, G. A New Method for Evaluation of Mechanical Stress Using the Reciprocal Amplitude of Magnetic Barkhausen Noise. IEEE Trans. Magn. 2011, 47, 459–465. [Google Scholar] [CrossRef]
- Gaunkar, N.P.; Kypris, O.; Nlebedim, I.C.; Jiles, D.C. Analysis of Barkhausen Noise Emissions and Magnetic Hysteresis in Multi-Phase Magnetic Materials. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Raghunathan, A.; Melikhov, Y.; Snyder, J.E.; Jiles, D.C. Modeling the Temperature Dependence of Hysteresis Based on Jiles–Atherton Theory. IEEE Trans. Magn. 2009, 45, 3954–3957. [Google Scholar] [CrossRef]
- Raghunathan, A.; Melikhov, Y.; Snyder, J.E.; Jiles, D.C. Theoretical Model of Temperature Dependence of Hysteresis Based on Mean Field Theory. IEEE Trans. Magn. 2010, 46, 1507–1510. [Google Scholar] [CrossRef]
- Ding, S.; Wang, P.; Lin, Y.; Zhu, D. Reduction of thermal effect on rail stress measurement based on magnetic Barkhausen noise anisotropy. Measurement 2018, 125, 92–98. [Google Scholar] [CrossRef]
- Damljanović, V.; Weaver, R.L. Laser vibrometry technique for measurement of contained stress in railroad rail. J. Sound Vib. 2005, 282, 341–366. [Google Scholar] [CrossRef]
- Alessandro, B.; Beatrice, C.; Bertotti, G.; Montorsi, A. Phenomenology and interpretation of the Barkhausen effect in ferromagnetic materials (invited). J. Appl. Phys. 1988, 64, 5355–5360. [Google Scholar] [CrossRef]
- Jiles, D.C. Dynamics of domain magnetization and the Barkhausen effect. Czechoslov. J. Phys. 2000, 50, 893–924. [Google Scholar] [CrossRef]
- Jiles, D.C. Theory of the magnetomechanical effect. J. Phys. D Appl. Phys. 1995, 28, 1537–1546. [Google Scholar] [CrossRef]
- Chwastek, K.; Szczyglowski, J. An alternative method to estimate the parameters of Jiles–Atherton model. J. Magn. Magn. Mater. 2007, 314, 47–51. [Google Scholar] [CrossRef]
- Zirka, S.; Moroz, Y.I.; Harrison, R.G.; Chwastek, K. On physical aspects of the Jiles-Atherton hysteresis models. J. Appl. Phys. 2012, 112, 043916. [Google Scholar] [CrossRef]
- Raghunathan, A.; Melikhov, Y.; Snyder, J.E.; Jiles, D.C. Generalized form of anhysteretic magnetization function for Jiles-Atherton theory of hysteresis. Appl. Phys. Lett. 2009, 95, 172510. [Google Scholar] [CrossRef]
- Sadowski, N.; Batistela, N.; Bastos, J.; Lajoie-Mazenc, M. An inverse Jiles-Atherton model to take into account hysteresis in time-stepping finite-element calculations. IEEE Trans. Magn. 2002, 38, 797–800. [Google Scholar] [CrossRef]
- Hussain, S.; Ghorbanian, V.; Benabou, A.; Clenet, S.; Lowther, D.A. A Study of the Effects of Temperature on Magnetic and Copper Losses in Electrical Machines. In Proceedings of the XXII International Conference on Electrical Machines (ICEM), Ecublens, Switzerland, 4–7 September 2016; pp. 1277–1283. [Google Scholar]
- Wang, Y.; Liu, X.; Wu, B.; Xiao, J.; Wu, D.; He, C. Dipole modeling of stress-dependent magnetic flux leakage. NDT E Int. 2018, 95, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.; Melikhov, Y.; Meydan, T.; Yang, Z.; Wu, D.; Wu, B.; He, C.; Liu, X. Stress-Dependent Magnetic Flux Leakage: Finite Element Modelling Simulations Versus Experiments. J. Nondestruct. Eval. 2019, 39, 1. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Boles, M.A. Thermodynamics: An Engineering Approach, 6th ed.; The McGraw-Hill Companies Inc.: New York, NY, USA, 2007. [Google Scholar]
- Timoshenko, S.; Goodier, J. Theory of Elasticity, 3rd ed.; The McGraw Hill Education: New York, NY, USA, 1970. [Google Scholar]
- Ding, S.; Tian, G.; Dobmann, G.; Wang, P. Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination. J. Magn. Magn. Mater. 2017, 421, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Grain-Oriented Electrical Steel (Technical Information). Available online: https://www.spacematdb.com/spacemat/manudatasheets/crgo.pdf (accessed on 25 November 2020).
- Ultra-Low Expansion Glass-Ceramics (Technical Information). Available online: https://www.sydor.com/wp-content/uploads/2019/05/Ohara-CLEARCERAM-Z-Low-Expansion-Glass.pdf (accessed on 1 November 2020).
- Somkun, S.; Moses, A.J.; Anderson, P.I. Effect of Magnetostriction Anisotropy in Nonoriented Electrical Steels on Deformation of Induction Motor Stator Cores. IEEE Trans. Magn. 2009, 45, 4744–4747. [Google Scholar] [CrossRef]
- Moses, A.J. Electrical steels: Past, present and future developments. IEE Proc. A Phys. Sci. Meas. Instrum. Manag. Educ. 1990, 137, 233–245. [Google Scholar] [CrossRef]
- Yamasaki, T.; Yamamoto, S.; Hirao, M. Effect of applied stresses on magnetostriction of low carbon steel. NDT E Int. 1996, 29, 263–268. [Google Scholar] [CrossRef]
- Klimczyk, P. Novel techniques for characterisation and control of magnetostriction in G.O.S.S. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2012. [Google Scholar]
- Somkun, S. Magnetostriction and Magnetic Anisotropy in Non-Oriented Electrical Steels and Stator Core Laminations. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2010. [Google Scholar]
J-A Parameters (at 20 °C) | Values | Sources | Mechanical Parameters | Values | Sources |
---|---|---|---|---|---|
Saturation magnetization, Mst | (A/m) | Measured and identified by hybrid GA-PSO algorithm | CTE of electrical steel, ζT1 | (°C−1) | Ref. [32] |
Pining parameter, k | 103.8603 (A/m) | CTE of Ceramic glass, ζT2 | (°C−1) | Ref. [33] | |
Domain density, a | 65.5559 (A/m) | Young’s Modulus of NO steel, E | 205 (GPa) | Ref. [34] | |
Coupling factor, α | Poisson’s Ratio of NO steel, ν | 0.28 | |||
Reversibility parameter, c | 0.6799 | Magnetostriction coefficient, b | 2.56 × (m2/A2) | Measured and fitted by parabolic equation | |
Temperature coefficient, β1 | 0.3981 | ||||
Temperature coefficient, β2 | 0.2336 | ||||
Temperature coefficient, β3 | 1.7220 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Meydan, T.; Melikhov, Y. Quantitative Evaluation of the Effect of Temperature on Magnetic Barkhausen Noise. Sensors 2021, 21, 898. https://doi.org/10.3390/s21030898
Wang Y, Meydan T, Melikhov Y. Quantitative Evaluation of the Effect of Temperature on Magnetic Barkhausen Noise. Sensors. 2021; 21(3):898. https://doi.org/10.3390/s21030898
Chicago/Turabian StyleWang, Yujue, Turgut Meydan, and Yevgen Melikhov. 2021. "Quantitative Evaluation of the Effect of Temperature on Magnetic Barkhausen Noise" Sensors 21, no. 3: 898. https://doi.org/10.3390/s21030898
APA StyleWang, Y., Meydan, T., & Melikhov, Y. (2021). Quantitative Evaluation of the Effect of Temperature on Magnetic Barkhausen Noise. Sensors, 21(3), 898. https://doi.org/10.3390/s21030898