An Integrated Detection Based on a Multi-Parameter Plasmonic Optical Fiber Sensor
<p>Schematic diagram of a plasmonic optical fiber sensor: (<b>a</b>) its three-dimensional structure; (<b>b</b>) its two-dimensional cross-section structure.</p> "> Figure 2
<p>The variation of transmission loss with a wavelength and different refractive index of liquid to be measured: (<b>a</b>) with different air hole spacing <span class="html-italic">Λ</span>; (<b>b</b>) with various side’s depth <span class="html-italic">d<sub>h</sub></span>; (<b>c</b>) with different air hole diameters <span class="html-italic">d</span>.</p> "> Figure 3
<p>Structure optimization of plasmonic optical fiber sensor under the same refractive index of liquid to be measured: (<b>a</b>) The variation of transmission loss of channel 1 with wavelength; (<b>b</b>) The variation of FWHM with <span class="html-italic">H</span> under the same <span class="html-italic">T</span> and different channel 1 diameter; (<b>c</b>) The variation of transmission loss with wavelength at the same <span class="html-italic">T</span> and different <span class="html-italic">H</span> in <span class="html-italic">d</span><sub><span class="html-italic">ch</span>1</sub> = 7 µm; (<b>e</b>) The variation of FWHM with <span class="html-italic">T</span> under the same <span class="html-italic">H</span> and different channel 2 diameters; (<b>f</b>) The variation of transmission loss with wavelength at the same <span class="html-italic">H</span> and different <span class="html-italic">T</span> in <span class="html-italic">d</span><sub><span class="html-italic">ch</span>2</sub> = 6 µm.</p> "> Figure 4
<p>Optimization of graphene layer number of plasmonic optical fiber sensor under the condition of the same <span class="html-italic">T</span>, <span class="html-italic">H</span> and different refractive index of liquid to be measured: (<b>a</b>) The variation of transmission loss with wavelength under different graphene layers; (<b>b</b>) The change of resonance wavelength with the refractive index of the liquid to be measured under various layers of graphene; (<b>c</b>) The variation of the average resonant wavelength shift with the number of graphene layers under the different refractive index of the liquid to be measured.</p> "> Figure 5
<p>Optimization of metal film thickness <span class="html-italic">t</span> of plasmonic optical fiber sensor under the condition of the same <span class="html-italic">T</span> and <span class="html-italic">H</span>, and different refractive index of liquid to be measured: (<b>a</b>) The variation of transmission loss with wavelength; (<b>b</b>) The variation of resonance wavelength sensitivity of RI channel with gold film thickness <span class="html-italic">t</span>; (<b>c</b>) The FWHM of RI channel varies with the refractive index of the external environment for <span class="html-italic">t</span> = 55 nm.</p> "> Figure 6
<p>Optimization of metal film thickness <span class="html-italic">t</span><span class="html-italic"/><sub>1</sub> structure of plasmonic optical fiber sensor under the same refractive index of <span class="html-italic">T</span> and liquid to be measured: (<b>a</b>) The variation of transmission loss with wavelength; (<b>b</b>) The FWHM of channel 1 varies with <span class="html-italic">H</span> under different thicknesses of <span class="html-italic">t</span><span class="html-italic"/><sub>1</sub>; (<b>c</b>) The variation of magnetic field intensity sensitivity with <span class="html-italic">t</span><span class="html-italic"/><sub>1</sub>; (<b>d</b>) The variation of resonant wavelength shift of channel 1 and channel 2 with magnetic field intensity and its linear fitting results; (<b>e</b>) The FWHM of channel 1 varies with the intensity of the magnetic field for <span class="html-italic">t</span><span class="html-italic"/><sub>1</sub> = 40 nm.</p> "> Figure 7
<p>Optimization of metal film thickness <span class="html-italic">t</span><span class="html-italic"/><sub>2</sub> structure of plasmonic optical fiber sensor under the same refractive index of <span class="html-italic">H</span> and liquid to be measured: (<b>a</b>) The variation of transmission loss with wavelength; (<b>b</b>) The FWHM of channel 1 and channel 2 varies with <span class="html-italic">T</span> under the different thickness of <span class="html-italic">t</span><span class="html-italic"/><sub>2</sub>; (<b>c</b>) The variation of transmission loss with wavelength at different T for <span class="html-italic">t</span><span class="html-italic"/><sub>2</sub> = 45 nm; (<b>d</b>) The variation of resonant wavelength shift of channel 1 and channel 2 with <span class="html-italic">T</span> and its linear fitting results; (<b>e</b>) The FWHM of channel 1 and channel 2 varies with the intensity of T for <span class="html-italic">t</span><span class="html-italic"/><sub>2</sub> = 45 nm.</p> ">
Abstract
:1. Introduction
2. Sensor Principle
3. Results and Discussion
3.1. Sensor Structure Optimization
3.2. Graphene Layer Number
3.3. Gold Film Thickness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Lu, Y.; Yang, X.; Duan, L.; Yao, J. High-sensitivity magnetic field sensor based on a dual-core photonic crystal fiber. Appl. Opt. 2019, 58, 5800. [Google Scholar] [CrossRef]
- Fan, Z.-K. A Tunable High-Sensitivity Refractive Index of Analyte Biosensor Based on Metal-Nanoscale Covered Photonic Crystal Fiber with Surface Plasmon Resonance. IEEE Photon- J. 2019, 11, 1–14. [Google Scholar] [CrossRef]
- De, M.; Singh, V.K. Analysis of a highly sensitive flat fiber plasmonic refractive index sensor. Appl. Opt. 2020, 59, 380–388. [Google Scholar] [CrossRef]
- Xiao, G.; Li, J.; Pan, Y. Significantly enhanced sensitivity using a gold aperture arrays-dielectric hybrid structure in optical fiber sensor. J. Phys. Commun. 2019, 3, 015005. [Google Scholar] [CrossRef] [Green Version]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Anal. Bioanal. Chem. 1999, 377, 528–539. [Google Scholar] [CrossRef]
- Ritchie, R.H. Plasmonic Losses by Fast Electrons in Thin Films. Phys. Rev. 1957, 106, 874–881. [Google Scholar] [CrossRef]
- Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. A Hadron. Nucl. 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Kretschmann, E. Determination of optical constants of metals by excitation of surface plasmons. Zeitschrift Fur Physik 1971, 241, 313. [Google Scholar] [CrossRef]
- Islam, M.R.; Khan, M.M.; Mehjabin, F.; Chowdhury, J.A.; Islam, M. Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor. Results Phys. 2020, 19, 103501. [Google Scholar]
- Hassani, A.; Skorobogatiy, M. Design of the Microstructured Optical Fiber-based Surface Plasmon Resonance sensors with enhanced microfluidics. Opt. Express 2006, 14, 11616–11621. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Lu, P.; Chen, L.; Lv, C.; Liu, D. All-solid D-shaped photonic fiber sensor based on surface plasmon resonance. Opt. Commun. 2012, 285, 1550–1554. [Google Scholar] [CrossRef]
- Dash, J.N.; Jha, R. On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance. Plasmonics 2015, 10, 1123–1131. [Google Scholar] [CrossRef]
- An, G.; Li, S.; Cheng, T.; Yan, X.; Zhang, X.; Zhou, X.; Yuan, Z. Ultra-stable D-shaped Optical Fiber Refractive Index Sensor with Graphene-Gold Deposited Platform. Plasmonics 2019, 14, 155–163. [Google Scholar] [CrossRef]
- Shi, W.H.; You, C.J.; Wu, J. D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling. Acta Phys. Sin. 2015, 64, 224221. [Google Scholar]
- Liu, H.; Tan, C.; Zhu, C.; Wang, Y.; Gao, Y.; Ma, H.; Cheng, D. Simultaneous measurement of temperature and magnetic field based on directional resonance coupling in photonic crystal fibers. Opt. Commun. 2017, 391, 111–115. [Google Scholar] [CrossRef]
- Ying, Y.; Hu, N.; Si, G.; Xu, K.; Liu, N.; Zhao, J.-Z. Magnetic field and temperature sensor based on D-shaped photonic crystal fiber. Optik 2019, 176, 309–314. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
- Hao, F.; Nordlander, P. Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem. Phys. Lett. 2007, 446, 115–118. [Google Scholar] [CrossRef]
- Bruna, M.; Borini, S. Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 2009, 94, 031901. [Google Scholar] [CrossRef]
- Yang, S.Y.; Chieh, J.J.; Horng, H.E.; Hong, C.Y.; Yang, H.C. Origin and applications of magnetically tunable refractive index of magnetic fluid films. Appl. Phys. Lett. 2004, 84, 5204–5206. [Google Scholar] [CrossRef]
- Yuan, C.; Lou, Z.; Wang, W.; Yang, L.; Li, Y. Synthesis of Fe3C@C from Pyrolysis of Fe3O4-Lignin Clusters and Its Application for Quick and Sensitive Detection of PrPSc through a Sandwich SPR Detection Assay. Int. J. Mol. Sci. 2019, 20, 741. [Google Scholar] [CrossRef] [Green Version]
- Lou, Z.; Han, H.; Zhou, M.; Wan, J.; Sun, Q.; Zhou, X.; Gu, N. Fabrication of Magnetic Conjugation Clusters via Intermolecular Assembling for Ultrasensitive Surface Plasmon Resonance (SPR) Detection in a Wide Range of Concentrations. Anal. Chem. 2017, 89, 13472–13479. [Google Scholar] [CrossRef]
- Hong, C.-Y.; Horng, H.E.; Yang, S.Y. Tunable refractive index of magnetic fluids and its applications. Phys. Status Solidi 2004, 1, 1604–1609. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Wu, D.; Wang, Q. Magnetic field and temperature measurements with a magnetic fluid-filled photonic crystal fiber bragg grating. Instrum. Sci. Technol. 2013, 41, 463–472. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, L.; Liu, Z.; Zhang, Y.; Zhang, Y. Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Opt. Lett. 2017, 42, 2948–2951. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, M.; Ding, J.; Wu, J.; Zhu, Y.; Li, H.; Wang, Q.; Yang, C. A high sensitivity D-type surface plasmon resonance optical fiber refractive index sensor with graphene coated silver nano-columns. Opt. Fiber Technol. 2019, 48, 34–39. [Google Scholar] [CrossRef]
- Gongli, X.; Xiuhua, Y.; Hongyan, Y.; Wanying, D.; Junlin, X.; Qingchen, W.; Haiou, L.; Fabi, Z.; Qi, L.; Yonghe, C.; et al. Plasma Refractive Index Sensor with Tunable Cross Tie-Shaped Graphene Array Structure. Acta Opt. Sin. 2019, 39, 0728011. [Google Scholar] [CrossRef]
- Ahmad, M.; Hench, L.L. Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Biosens. Bioelectron. 2005, 20, 1312–1319. [Google Scholar] [CrossRef]
- Gao, D.; Guan, C.; Wen, Y.; Zhong, X.; Yuan, L. Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 2014, 313, 94–98. [Google Scholar] [CrossRef]
- Melwin, G.; Senthilnathan, K. High Sensitive D-Shaped Photonic Crystal Fiber Sensor with V-Groove Analyte Channel. Optik 2020, 213, 164779. [Google Scholar] [CrossRef]
- Guo, Y.; Li, J.; Wang, X.; Zhang, S.; Liu, Y.; Wang, J.; Wang, S.; Meng, X.; Hao, R.; Li, S. Highly sensitive sensor based on D-shaped microstructure fiber with hollow core. Opt. Laser Technol. 2020, 123, 105922. [Google Scholar] [CrossRef]
- Yu, H.; Chong, Y.; Zhang, P.; Ma, J.; Li, D. A D-shaped fiber SPR sensor with a composite nanostructure of MoS2 -graphene for glucose detection. Talanta 2020, 219, 121324. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, G.; Ou, Z.; Yang, H.; Xu, Y.; Chen, J.; Li, H.; Li, Q.; Zeng, L.; Den, Y.; Li, J. An Integrated Detection Based on a Multi-Parameter Plasmonic Optical Fiber Sensor. Sensors 2021, 21, 803. https://doi.org/10.3390/s21030803
Xiao G, Ou Z, Yang H, Xu Y, Chen J, Li H, Li Q, Zeng L, Den Y, Li J. An Integrated Detection Based on a Multi-Parameter Plasmonic Optical Fiber Sensor. Sensors. 2021; 21(3):803. https://doi.org/10.3390/s21030803
Chicago/Turabian StyleXiao, Gongli, Zetao Ou, Hongyan Yang, Yanping Xu, Jianyun Chen, Haiou Li, Qi Li, Lizhen Zeng, Yanron Den, and Jianqing Li. 2021. "An Integrated Detection Based on a Multi-Parameter Plasmonic Optical Fiber Sensor" Sensors 21, no. 3: 803. https://doi.org/10.3390/s21030803
APA StyleXiao, G., Ou, Z., Yang, H., Xu, Y., Chen, J., Li, H., Li, Q., Zeng, L., Den, Y., & Li, J. (2021). An Integrated Detection Based on a Multi-Parameter Plasmonic Optical Fiber Sensor. Sensors, 21(3), 803. https://doi.org/10.3390/s21030803