Binaural Heterophasic Superdirective Beamforming
<p>Illustration of different phase scenarios and the influence of the interaural phase relations on the localization of speech and white noise in space. The circle shape means that the signal is concentrated in a limited area, in front of the head for the case of in phase or on either side of the ears for the case of random phase. The rectangle shape indicates that the signal spreads in the area behind the ears, which is related to the case of out of phase. The red dotted circle indicates that the speech signal and the white noise are both in phase, which is related to the monaural superdirective beamformer. The blue circle indicates that the speech signal is in phase while the white noise is in random phase, which is related to the binaural superdirective beamformer developed in this work. This figure is a modified version of the results in [<a href="#B49-sensors-21-00074" class="html-bibr">49</a>].</p> "> Figure 2
<p>Illustration of the proposed binaural superdirective beamformer, which suppresses directional acoustic interference and noise and meanwhile separates the desired signal and the white noise into different zones.</p> "> Figure 3
<p>Beampatterns of the binaural heterophasic superdirective beamformer with various numbers of microphones: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>. Conditions of simulation: <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> kHz, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> cm, and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mi>M</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Beampatterns of the binaural heterophasic superdirective beamformer as a function of the frequency with different numbers of microphones: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>. Conditions of simulation: <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math> cm and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mi>M</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>WNGs and DFs of the 1st-, 2nd-, 3rd-, and 4th-order binaural heterophasic superdirective beamformers versus frequency: (<b>a</b>) WNGs and (<b>b</b>) DFs. The sensor spacing: <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> cm.</p> "> Figure 6
<p>WNGs and DFs of the 1st-, 2nd-, 3rd-, and 4th-order binaural heterophasic superdirective beamformers versus parameter <span class="html-italic">N</span>: (<b>a</b>) WNGs and (<b>b</b>) DFs. Conditions of simulation: <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> kHz and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> cm.</p> "> Figure 7
<p>Magnitude of the output ICs: (<b>a</b>) diffuse noise and (<b>b</b>) white noise. Conditions of simulation: <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> for the binaural superdirective beamformer, <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> for the conventional superdirective beamformer, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> cm. Note that the output IC of the binaural superdirective beamformer in diffuse noise is frequency-dependent; it approaches 1 under 4 kHz but decreases as the frequency increases.</p> "> Figure 8
<p>Output IC of the estimated signals (see (<a href="#FD62-sensors-21-00074" class="html-disp-formula">62</a>)) as a function of frequency and input SNR. Conditions of simulation: <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> cm.</p> "> Figure 9
<p>A photo of the designed array and the experimental setup for evaluating the binaural and conventional superdirective beamformers: (<b>a</b>) photo of the designed eight-microphone array, (<b>b</b>) a close view photo of the experimental setup, and (<b>c</b>) a wide angle photo of the experimental setup.</p> "> Figure 10
<p>Monaural and binaural superdirective beamformers in a conference room: (<b>a</b>) output of the 2nd-order monaural superdirective beamformer and its spectrogram with <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math> cm, and (<b>b</b>) output of the 2nd-order binaural superdirective beamformer and its spectrogram with <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math> cm.</p> "> Figure 11
<p>An illustration of the auditory map for subjects (horizontal-plane). During the test, the subjects were asked to mark the areas according to the sound source location they heard through headphones.</p> "> Figure 12
<p>The average auditory map marked by the listening subjects: (<b>a</b>) monaural superdirective beamformer and (<b>b</b>) binaural superdirective beamformer. The blue waves refer to the region in which the desired speech is heard, and the region filled with disorderly dots refer to the region in which the white noise is heard. Conditions of experiment: <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math> cm.</p> ">
Abstract
:1. Introduction
2. Signal Model and Problem Formulation
- (i)
- The sensor spacing, , is much smaller than the acoustic wavelength, , i.e., (this implies that ). This assumption is required so that the true acoustic pressure differentials can be approximated by finite differences of the microphones’ outputs.
- (ii)
- The desired source signal propagates from the angle (endfire direction). Therefore, (2) becomes
3. Conventional Superdirective Beamformer
4. Binaural Linear Filtering and Performance Measures
- the binaural white noise gain (WNG):
- and the binaural DF:
5. Binaural Heterophasic Superdirective Beamformer
6. Experiments and Analysis
6.1. Performance Analysis
6.2. Experiments in Real Environments
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benesty, J.; Chen, J.; Pan, C. Fundamentals of Differential Beamforming; Springer: Berlin, Germany, 2016. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y. Microphone Array Signal Processing; Springer: Berlin, Germany, 2008. [Google Scholar]
- Elko, G.W. Superdirectional microphone arrays. In Acoustic Signal Processing for Telecommunication; Springer: Berlin, Germany, 2000; pp. 181–237. [Google Scholar]
- Brandstein, M.; Ward, D. Microphone Arrays: Signal Processing Techniques and Applications; Springer: Berlin, Germany, 2001. [Google Scholar]
- Johnson, D.H.; Dudgeon, D.E. Array Signal Processing: Concepts and Techniques; PTR Prentice Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Huang, G.; Benesty, J.; Chen, J. On the Design of Frequency-Invariant Beampatterns with Uniform Circular Microphone Arrays. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 1140–1153. [Google Scholar] [CrossRef]
- Huang, G.; Chen, J.; Benesty, J. Insights into Frequency-Invariant Beamforming with Concentric Circular Microphone Arrays. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 2305–2318. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Cohen, I. Design of Circular Differential Microphone Arrays; Springer: Berlin, Germany, 2015. [Google Scholar]
- Cox, H.; Zeskind, R.M.; Kooij, T. Practical supergain. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 393–398. [Google Scholar] [CrossRef]
- Huang, G.; Benesty, J.; Cohen, I.; Chen, J. A simple theory and new method of differential beamforming with uniform linear microphone arrays. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 1079–1093. [Google Scholar] [CrossRef]
- Li, C.; Benesty, J.; Huang, G.; Chen, J. Subspace superdirective beamformers based on joint diagonalization. In Proceedings of the IEEE ICASSP, Shanghai, China, 20–25 March 2016; pp. 400–404. [Google Scholar]
- Pan, C.; Chen, J.; Benesty, J. Design of robust differential microphone arrays with orthogonal polynomials. J. Acoust. Soc. Am. 2015, 138, 1079–1089. [Google Scholar] [CrossRef]
- Huang, G.; Chen, J.; Benesty, J. Design of planar differential microphone arrays with fractional orders. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 28, 116–130. [Google Scholar] [CrossRef]
- Huang, G.; Chen, J.; Benesty, J. A flexible high directivity beamformer with spherical microphone arrays. J. Acoust. Soc. Am. 2018, 143, 3024–3035. [Google Scholar] [CrossRef]
- Jin, J.; Chen, J.; Benesty, J.; Wang, Y.; Huang, G. Heterophasic Binaural Differential Beamforming for Speech Intelligibility Improvement. IEEE Trans. Veh. Technol. 2020, 69, 13497–13509. [Google Scholar] [CrossRef]
- Elko, G.W.; Meyer, J. Microphone arrays. In Springer Handbook of Speech Processing; Springer: Berlin, Germany, 2008; pp. 1021–1041. [Google Scholar]
- Lotter, T.; Vary, P. Dual-channel speech enhancement by superdirective beamforming. EURASIP J. Appl. Signal Process. 2006, 1, 063297. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Benesty, J.; Chen, J. Design of robust concentric circular differential microphone arrays. J. Acoust. Soc. Am. 2017, 141, 3236–3249. [Google Scholar] [CrossRef] [Green Version]
- Benesty, J.; Chen, J. Study and Design of Differential Microphone Arrays; Springer: Berlin, Germany, 2012. [Google Scholar]
- Mabande, E.; Schad, A.; Kellermann, W. Design of robust superdirective beamformers as a convex optimization problem. In Proceedings of the IEEE ICASSP, Taipei, Taiwan, 19–24 April 2009; pp. 77–80. [Google Scholar]
- Berkun, R.; Cohen, I.; Benesty, J. Combined beamformers for robust broadband regularized superdirective beamforming. IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23, 877–886. [Google Scholar] [CrossRef]
- Crocco, M.; Trucco, A. Design of robust superdirective arrays with a tunable tradeoff between directivity and frequency-invariance. IEEE Trans. Signal Process. 2011, 59, 2169–2181. [Google Scholar] [CrossRef]
- Huang, G.; Benesty, J.; Chen, J. Superdirective Beamforming Based on the Krylov Matrix. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 2531–2543. [Google Scholar] [CrossRef]
- Pan, C.; Chen, J.; Benesty, J. Reduced-order robust superdirective beamforming with uniform linear microphone arrays. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 1548–1559. [Google Scholar] [CrossRef]
- Crocco, M.; Trucco, A. Stochastic and analytic optimization of sparse aperiodic arrays and broadband beamformers with robust superdirective patterns. IEEE Trans. Audio, Speech, Lang. Process. 2012, 20, 2433–2447. [Google Scholar] [CrossRef]
- Berkun, R.; Cohen, I.; Benesty, J. A tunable beamformer for robust superdirective beamforming. In Proceedings of the IEEE IWAENC, Xi’an, China, 13–16 September 2016; pp. 1–5. [Google Scholar]
- Blauert, J. Spatial Hearing: The Psychophysics of Human Sound Localization; MIT Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Blauert, J.; Lindemann, W. Spatial mapping of intracranial auditory events for various degrees of interaural coherence. J. Acoust. Soc. Am. 1986, 79, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, I.J. The Influence of Interaural Phase on Interaural Summation and Inhibition. J. Acoust. Soc. Am. 1948, 20, 536–544. [Google Scholar] [CrossRef]
- Hirsh, I.J. The relation between localization and intelligibility. J. Acoust. Soc. Am. 1950, 22, 196–200. [Google Scholar] [CrossRef]
- Jeffress, L.A.; Blodgett, H.C.; Deatherage, B.H. Effect of interaural correlation on the precision of centering a noise. J. Acoust. Soc. Am. 1962, 34, 1122–1123. [Google Scholar] [CrossRef]
- Kollmeier, B.; Brand, T.; Meyer, B. Perception of speech and sound. In Springer Handbook of Speech Processing; Springer: Berlin, Germany, 2008; pp. 61–82. [Google Scholar]
- Zimmer, U.; Macaluso, E. High binaural coherence determines successful sound localization and increased activity in posterior auditory areas. Neuron 2005, 47, 893–905. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.A.; Licklider, J.C. The intelligibility of interrupted speech. J. Acoust. Soc. Am. 1950, 22, 167–173. [Google Scholar] [CrossRef]
- Blauert, J. Sound localization in the median plane. Acta Acust. United Acust. 1969, 22, 205–213. [Google Scholar]
- Jeffress, L.A. A place theory of sound localization. J. Comp. Physiol. Psychol. 1948, 41, 35. [Google Scholar] [CrossRef] [PubMed]
- Sandel, T.; Teas, D.; Feddersen, W.; Jeffress, L. Localization of sound from single and paired sources. J. Acoust. Soc. Am. 1955, 27, 842–852. [Google Scholar] [CrossRef]
- Hirsh, I.J.; Pollack, I. The role of interaural phase in loudness. J. Acoust. Soc. Am. 1948, 20, 761–766. [Google Scholar] [CrossRef]
- Kock, W. Binaural localization and masking. J. Acoust. Soc. Am. 1950, 22, 801–804. [Google Scholar] [CrossRef]
- Jeffress, L.A.; Blodgett, H.C.; Sandel, T.T.; Wood, C.L., III. Masking of tonal signals. J. Acoust. Soc. Am. 1956, 28, 416–426. [Google Scholar] [CrossRef]
- Jeffress, L.A.; Robinson, D.E. Formulas for the coefficient of interaural correlation for noise. J. Acoust. Soc. Am. 1962, 34, 1658–1659. [Google Scholar] [CrossRef]
- Licklider, J.C.R.; Miller, G.A. The Perception of Speech. In Handbook of Experimental Psychology; Stevens, S.S., Ed.; Wiley: Hoboken, NJ, USA, 1951; pp. 1040–1074. [Google Scholar]
- Beranek, L.L. Acoustics; Acoustic Society of America: Woodbury, NY, USA, 1986. [Google Scholar]
- Gerald, K.; Colburn, H.S. Informational Masking in Speech Recognition; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zobel, B.H.; Wagner, A.; Sanders, L.D.; Ba¸skent, D. Spatial release from informational masking declines with age: Evidence from a detection task in a virtual separation paradigm. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 146, 548–566. [Google Scholar] [CrossRef] [Green Version]
- Moore, B.C. Effects of hearing loss and age on the binaural processing of temporal envelope and temporal fine structure information. Hear. Res. 2020, 107991. [Google Scholar] [CrossRef]
- Esther, S.; van de Par, S. The role of reliable interaural time difference cues in ambiguous binaural signals for the intelligibility of multitalker speech. J. Acoust. Soc. Am. 2020, 147, 4041–4054. [Google Scholar]
- Jutras, B.; Lagacé, J.; Koravand, A. The development of auditory functions. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–155. [Google Scholar]
- Licklider, J.C.R. The Influence of interaural phase relations upon the masking of speech by white noise. J. Acoust. Soc. Am. 1948, 20, 150–159. [Google Scholar] [CrossRef]
- Moore, B.C. An Introduction to the Psychology of Hearing; Brill: Leiden, The Netherlands, 2012. [Google Scholar]
- Marquardt, D.; Hohmann, V.; Doclo, S. Interaural coherence preservation in multi-channel Wiener filtering-based noise reduction for binaural hearing aids. IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23, 2162–2176. [Google Scholar] [CrossRef]
- Hadad, E.; Marquardt, D.; Doclo, S. Theoretical analysis of binaural transfer function MVDR beamformers with interference cue preservation constraints. IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23, 2449–2464. [Google Scholar] [CrossRef]
- Cox, H.; Zeskind, R.; Owen, M. Robust adaptive beamforming. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1365–1376. [Google Scholar] [CrossRef] [Green Version]
- Golub, G.H.; Loan, C.F.V. Matrix Computations, 3rd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Eaton, M.L. A maximization problem and its application to canonical correlation. J. Multivar. Anal. 1976, 6, 422–425. [Google Scholar] [CrossRef] [Green Version]
Scenario | Speech | Noise | Class |
---|---|---|---|
1 | Out of phase | In phase | Antiphasic |
2 | In phase | Out of phase | Antiphasic |
3 | In phase | Random phase | Heterophasic |
4 | Out of phase | Random phase | Heterophasic |
5 | In phase | In phase | Homophasic |
6 | Out of phase | Out of phase | Homophasic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, J.; Benesty, J.; Jin, J.; Huang, G. Binaural Heterophasic Superdirective Beamforming. Sensors 2021, 21, 74. https://doi.org/10.3390/s21010074
Wang Y, Chen J, Benesty J, Jin J, Huang G. Binaural Heterophasic Superdirective Beamforming. Sensors. 2021; 21(1):74. https://doi.org/10.3390/s21010074
Chicago/Turabian StyleWang, Yuzhu, Jingdong Chen, Jacob Benesty, Jilu Jin, and Gongping Huang. 2021. "Binaural Heterophasic Superdirective Beamforming" Sensors 21, no. 1: 74. https://doi.org/10.3390/s21010074
APA StyleWang, Y., Chen, J., Benesty, J., Jin, J., & Huang, G. (2021). Binaural Heterophasic Superdirective Beamforming. Sensors, 21(1), 74. https://doi.org/10.3390/s21010074