Few Percent Efficient Polarization-Sensitive Conversion in Nonlinear Plasmonic Interactions Inside Oligomeric Gold Structures
<p>Energy level schemes of (<b>a</b>,<b>b</b>) four-wave mixing (FWM) and (<b>c</b>) partially degenerate four-wave mixing (PDFWM).</p> "> Figure 2
<p>(<b>a</b>) The schematic of the experimental setup. (<b>b</b>) The SEM side-view image of the gold film inner structure at different magnifications. The nanorod-like element is shown in the red circle.</p> "> Figure 3
<p>(<b>a</b>) The SEM top-view image of the gold film and (<b>b</b>) its fast Fourier transform (FFT) spectrum. The ring-pattern radius corresponds to the average distances between the structure elements (nanorods). (<b>c</b>) Schematic illustration of oligomeric structure. The building block in the form of a trimer is highlighted.</p> "> Figure 4
<p>Vector plot of electric field amplitude in the cases of (<b>a</b>) a Laguerre–Gaussian beam with radial polarization, (<b>b</b>) a Laguerre–Gaussian beam with azimuthal polarization and (<b>c</b>) a plane wave with linear polarization. The location of the nanorod trimer in each case is shown by the three yellow dots.</p> "> Figure 5
<p>Experimental backscattering spectra of the bare gold film for the 515 nm, 300 fs laser pulses with various polarizations (as indicated in the frame), showing the maximum scattering at the plasmon resonance wavelength and additional Stokes/anti-Stokes side-band components.</p> "> Figure 6
<p>Schematic differences in collective plasmonic modes excited in the oligomeric structure of nanorods, depending on the polarization type: (<b>a</b>) linear, (<b>b</b>) radial and (<b>c</b>) azimuthal. The electric near-field is localized in narrow gaps between gold nanorods. The arrangement of hotspots depends on the spatial location of the oligomer in relation to the center of the laser beam in the case of radial or azimuthal polarization.</p> "> Figure 7
<p>(<b>a</b>) Maximal values <math display="inline"><semantics> <mrow> <msup> <mrow> <mfenced close="|" open="|"> <mi>E</mi> </mfenced> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> calculated inside the nanorod trimer for various polarizations depending on the wavelength (bottom <span class="html-italic">x</span>-axis) and photon energy (top <span class="html-italic">x</span>-axis). (<b>b</b>) Experimental backscattering spectra of the Stokes-component intensity. Top <span class="html-italic">x</span>-axis shows difference in photon energy with laser pump (515 nm).</p> "> Figure 8
<p>Spatial distributions of the electric field amplitude for radial (<b>a</b>,<b>b</b>), azimuthal (<b>c</b>,<b>d</b>) and linear (<b>e</b>,<b>f</b>) polarization and λ = 2100 nm inside the nanorod trimer. (<b>a</b>,<b>c</b>,<b>e</b>) Top view in the cross-section plane shown by the white dashed line in (<b>b</b>,<b>d</b>,<b>f</b>). The white arrow shows the local polarization direction. (<b>b</b>,<b>d</b>,<b>f</b>) Side view in the cross-section plane shown by the white dashed line in (<b>a</b>,<b>c</b>,<b>e</b>). Electric field localization between nanorods can be observed. The color scale is given for the normalized magnitude |E|/|E<sub>0</sub>|. The electric field distribution in (<b>a</b>) is asymmetrical because of the location of the trimer in the bottom-right sector of the Laguerre–Gaussian beam with radial polarization. The trimer is not exactly symmetrical in relation to the polarization vector in this location.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Film Deposition/Characterization and Its Backscattering Spectral Measurements
2.2. Numerical Simulations
3. Results and Discussion
3.1. Backscattering Spectra
3.2. Numerical Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hentschel, M.; Saliba, M.; Vogelgesang, R.; Giessen, H.; Alivisatos, A.P.; Liu, N. Transition from Isolated to Collective Modes in Plasmonic Oligomers. Nano Lett. 2010, 10, 2721–2726. [Google Scholar] [CrossRef] [PubMed]
- Bautista, G.; Dreser, C.; Zang, X.; Kern, D.P.; Kauranen, M.; Fleischer, M. Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers. Nano Lett. 2018, 18, 2571–2580. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.; Shorokhov, A.S.; Hopkins, B.; Miroshnichenko, A.E.; Shcherbakov, M.R.; Camacho-Morales, R.; Fedyanin, A.A.; Neshev, D.N.; Kivshar, Y.S. Nonlinear Symmetry Breaking in Symmetric Oligomers. ACS Photonics 2017, 4, 454–461. [Google Scholar] [CrossRef]
- Deng, H.-D.; Chen, X.-Y.; Xu, Y.; Miroshnichenko, A.E. Single Protein Sensing with Asymmetric Plasmonic Hexamer via Fano Resonance Enhanced Two-Photon Luminescence. Nanoscale 2015, 7, 20405–20413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wen, F.; Zhen, Y.-R.; Nordlander, P.; Halas, N.J. Coherent Fano Resonances in a Plasmonic Nanocluster Enhance Optical Four-Wave Mixing. Proc. Natl. Acad. Sci. USA 2013, 110, 9215–9219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danckwerts, M.; Novotny, L. Optical Frequency Mixing at Coupled Gold Nanoparticles. Phys. Rev. Lett. 2007, 98, 026104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyd, R.W. Chapter 1-The nonlinear optical susceptibility. In Nonlinear Optics, 3rd ed.; Boyd, R.W., Ed.; Academic Press: Burlington, NJ, USA, 2008; pp. 1–67. ISBN 978-0-12-369470-6. [Google Scholar]
- Bonacina, L.; Brevet, P.-F.; Finazzi, M.; Celebrano, M. Harmonic Generation at the Nanoscale. J. Appl. Phys. 2020, 127, 230901. [Google Scholar] [CrossRef]
- Kauranen, M.; Zayats, A.V. Nonlinear Plasmonics. Nat. Photonics 2012, 6, 737–748. [Google Scholar] [CrossRef]
- Kharintsev, S.S.; Kharitonov, A.V.; Saikin, S.K.; Alekseev, A.M.; Kazarian, S.G. Nonlinear Raman Effects Enhanced by Surface Plasmon Excitation in Planar Refractory Nanoantennas. Nano Lett. 2017, 17, 5533–5539. [Google Scholar] [CrossRef]
- Baida, H.; Mongin, D.; Christofilos, D.; Bachelier, G.; Crut, A.; Maioli, P.; Del Fatti, N.; Vallée, F. Ultrafast Nonlinear Optical Response of a Single Gold Nanorod near Its Surface Plasmon Resonance. Phys. Rev. Lett. 2011, 107, 057402. [Google Scholar] [CrossRef]
- Wang, X.; Yao, L.; Chen, X.; Dai, H.; Wang, M.; Zhang, L.; Ni, Y.; Xiao, L.; Han, J.-B. Gap-Induced Giant Third-Order Optical Nonlinearity and Long Electron Relaxation Time in Random-Distributed Gold Nanorod Arrays. ACS Appl. Mater. Interfaces 2019, 11, 32469–32474. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Chandra, K.; Dam, D.H.M.; Wiederrecht, G.P.; Odom, T.W. Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles. J. Phys. Chem. Lett. 2015, 6, 4904–4908. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.-W.; Yu, Y.; Wang, X.; Ma, Z.-W.; Chen, C.; Zhou, Z.-K.; Han, J.-B.; Han, Y.-B.; Liu, S.-D.; Li, L. Study of Surface Plasmon Induced Hot Electron Relaxation Process and Third-Order Optical Nonlinearity in Gold Nanostructures. J. Phys. Chem. C 2015, 119, 27156–27161. [Google Scholar] [CrossRef]
- Mejía-Salazar, J.R.; Oliveira, O.N. Plasmonic Biosensing. Chem. Rev. 2018, 118, 10617–10625. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.B.; Zijlstra, P. Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sens. 2017, 2, 1103–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltomaa, R.; Glahn-Martínez, B.; Benito-Peña, E.; Moreno-Bondi, M.C. Optical Biosensors for Label-Free Detection of Small Molecules. Sensors 2018, 18, 4126. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Cushing, S.K.; Wu, N. Plasmon-Enhanced Optical Sensors: A Review. Analyst 2014, 140, 386–406. [Google Scholar] [CrossRef] [Green Version]
- Barik, A.; Otto, L.M.; Yoo, D.; Jose, J.; Johnson, T.W.; Oh, S.-H. Dielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays. Nano Lett. 2014, 14, 2006–2012. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, J.; Liu, T.; Tao, Y.; Jiang, R.; Liu, M.; Xiao, G.; Zhu, J.; Zhou, Z.-K.; Wang, X.; et al. Plasmonic Gold Mushroom Arrays with Refractive Index Sensing Figures of Merit Approaching the Theoretical Limit. Nat. Commun. 2013, 4, 2381. [Google Scholar] [CrossRef]
- Cen, C.; Lin, H.; Huang, J.; Liang, C.; Chen, X.; Tang, Y.; Yi, Z.; Ye, X.; Liu, J.; Yi, Y.; et al. A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays. Sensors 2018, 18, 4489. [Google Scholar] [CrossRef] [Green Version]
- Tittl, A.; Giessen, H.; Liu, N. Plasmonic Gas and Chemical Sensing. Nanophotonics 2014, 3, 157–180. [Google Scholar] [CrossRef] [Green Version]
- Valsecchi, C.; Brolo, A.G. Periodic Metallic Nanostructures as Plasmonic Chemical Sensors. Langmuir 2013, 29, 5638–5649. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bai, P.; Zhou, X.; Akimov, Y.; Png, C.E.; Ang, L.-K.; Knoll, W.; Wu, L. Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Adv. Opt. Mater. 2019, 7, 1801433. [Google Scholar] [CrossRef]
- Bauch, M.; Toma, K.; Toma, M.; Zhang, Q.; Dostalek, J. Plasmon-Enhanced Fluorescence Biosensors: A Review. Plasmonics 2014, 9, 781–799. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Zhang, Z.; Zheng, H.; Sun, M. Recent Progress on Plasmon-Enhanced Fluorescence. Nanophotonics 2015, 4, 472–490. [Google Scholar] [CrossRef]
- Saraeva, I.; Kudryashov, S.I.; Danilov, P.; Busleev, N.; Tolordava, E.R.; Rudenko, A.A.; Zayarny, D.; Ionin, A.; Romanova, Y.M. Polarization-Sensitive Surface-Enhanced In Situ Photoluminescence Spectroscopy of S. Aureus Bacteria on Gold Nanospikes. Sensors 2020, 20, 2466. [Google Scholar] [CrossRef]
- Emel’yanov, V.I. Self-Organisation of Ordered Ensembles of Nanoparticles upon Laser-Controlled Deposition of Atoms. Quantum Electron. 2006, 36, 489. [Google Scholar] [CrossRef]
- Fan, J.A.; Wu, C.; Bao, K.; Bao, J.; Bardhan, R.; Halas, N.J.; Manoharan, V.N.; Nordlander, P.; Shvets, G.; Capasso, F. Self-Assembled Plasmonic Nanoparticle Clusters. Science 2010, 328, 1135–1138. [Google Scholar] [CrossRef]
- Hnatovsky, C.; Shvedov, V.; Krolikowski, W.; Rode, A. Revealing Local Field Structure of Focused Ultrashort Pulses. Phys. Rev. Lett. 2011, 106, 123901. [Google Scholar] [CrossRef]
- Danilov, P.A.; Saraeva, I.N.; Kudryashov, S.I.; Porfirev, A.P.; Kuchmizhak, A.A.; Zhizhchenko, A.Y.; Rudenko, A.A.; Umanskaya, S.F.; Zayarny, D.A.; Ionin, A.A.; et al. Polarization-Selective Excitation of Dye Luminescence on a Gold Film by Structured Ultrashort Laser Pulses. JETP Lett. 2018, 107, 15–18. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Danilov, P.A.; Porfirev, A.P.; Saraeva, I.N.; Rudenko, A.A.; Busleev, N.I.; Umanskaya, S.F.; Kuchmizhak, A.A.; Zayarny, D.A.; Ionin, A.A.; et al. Symmetry-Wise Nanopatterning and Plasmonic Excitation of Ring-like Gold Nanoholes by Structured Femtosecond Laser Pulses with Different Polarizations. Opt. Lett. OL 2019, 44, 1129–1132. [Google Scholar] [CrossRef] [PubMed]
- Kravtsov, V.; AlMutairi, S.; Ulbricht, R.; Kutayiah, A.R.; Belyanin, A.; Raschke, M.B. Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients. Phys. Rev. Lett. 2018, 120, 203903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kravtsov, V.; Ulbricht, R.; Atkin, J.M.; Raschke, M.B. Plasmonic Nanofocused Four-Wave Mixing for Femtosecond near-Field Imaging. Nat. Nanotechnol. 2016, 11, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Grinblat, G.; Li, Y.; Nielsen, M.P.; Oulton, R.F.; Maier, S.A. Degenerate Four-Wave Mixing in a Multiresonant Germanium Nanodisk. ACS Photonics 2017, 4, 2144–2149. [Google Scholar] [CrossRef]
- Rim, W.-S.; Kim, K.-H. Broadband Visible-near Infrared and Deep Ultraviolet Generation by Four-Wave Mixing and High-Order Stimulated Raman Scattering from the Hybrid Metasurfaces of Plasmonic Nanoantennae and Raman-Active Nanoparticles. Phys. Chem. Chem. Phys. 2019, 21, 26615–26620. [Google Scholar] [CrossRef]
- Shen, Y.R. The Principles of Nonlinear Optics; Wiley-Interscience: New York, NY, USA, 1984; 575p. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busleev, N.; Kudryashov, S.; Saraeva, I.; Danilov, P.; Rudenko, A.; Zayarny, D.; Maier, S.A.; Minh, P.H.; Ionin, A. Few Percent Efficient Polarization-Sensitive Conversion in Nonlinear Plasmonic Interactions Inside Oligomeric Gold Structures. Sensors 2021, 21, 59. https://doi.org/10.3390/s21010059
Busleev N, Kudryashov S, Saraeva I, Danilov P, Rudenko A, Zayarny D, Maier SA, Minh PH, Ionin A. Few Percent Efficient Polarization-Sensitive Conversion in Nonlinear Plasmonic Interactions Inside Oligomeric Gold Structures. Sensors. 2021; 21(1):59. https://doi.org/10.3390/s21010059
Chicago/Turabian StyleBusleev, Nikolay, Sergey Kudryashov, Irina Saraeva, Pavel Danilov, Andrey Rudenko, Dmitry Zayarny, Stefan A. Maier, Pham Hong Minh, and Andrey Ionin. 2021. "Few Percent Efficient Polarization-Sensitive Conversion in Nonlinear Plasmonic Interactions Inside Oligomeric Gold Structures" Sensors 21, no. 1: 59. https://doi.org/10.3390/s21010059