Advancements in Methods and Camera-Based Sensors for the Quantification of Respiration
"> Figure 1
<p>Respiratory parameters classification.</p> "> Figure 2
<p>Non-contact sensors’ technology classification: SL = Structured-Light, ToF = Time-of-Flight, LiDAR = Light Detection and Ranging, CCD = charge coupled device.</p> "> Figure 3
<p>The flow diagram for studies included according to PRISMA.</p> "> Figure 4
<p>Number of articles per year. Only articles published prior to 31 October 2020 are counted.</p> "> Figure 5
<p>Depth variation over 8 s using the Kinect v2 ToF sensor (camera frequency: 30 frames per second).</p> "> Figure A1
<p>Recent RGB-D sensors: structured-light (Kinect v1, Asus Xtion Pro, Intel SR300), time-of-flight (Kinect v2, Kinect Azure DK, VicoVR), and active stereo vision (Intel R200, D435).</p> ">
Abstract
:1. Introduction
1.1. Related Work
1.2. Paper Contributions and Structure
- Categorization based on the sensor’s technology.
- Identification of the current needs and prospects in various lines of research and remarks for future work.
- Surveying advances made in the latest non-contact devices and camera-based monitoring systems.
2. Search Methodology
- The paper should be published as a journal article or in conference proceedings.
- The paper should be written in English.
- The paper should aim to characterize or quantify a respiratory element.
- The paper should be based on non-contact systems to assess respiration, especially the camera-based systems.
- Other vital signs, such as heart rate quantification, are not included in this review.
- If a paper from a specific research group or project had been published in a conference and then in a journal, only the extended journal paper was reviewed.
3. Results
3.1. Radar Sensors
3.2. Cross-Sectional Imaging Sensors
3.3. Ultrasound Imaging Sensors
3.4. Radiography and Fluoroscopy Imaging Sensors
3.5. RGB Sensors
3.6. Thermal Sensors
3.7. Depth Sensors
3.7.1. Structured-Light (SL) Sensors
3.7.2. Time-of-Flight (ToF) Sensors
3.7.3. Active Stereo Vision (ASV) Sensors
4. Discussion
- In which operating environments do non-contact systems perform?
- What are the limitations on what can be achieved in respiration assessment, using non-contact systems?
- How can non-contact systems help address some of the current and urgent health issues in the present year (2020)?
4.1. In Which Operating Environments Do Non-Contact Systems Perform?
4.1.1. Home
4.1.2. Clinical
4.1.3. Sports
4.1.4. Cars
4.1.5. Intensive Care Unit
4.1.6. Other Environments
4.2. What Are the Limitations on What Can Be Achieved in Respiration Assessment, Using Non-Contact Systems?
4.2.1. Spatial Coverage
4.2.2. Hardware Limitation
4.2.3. Cost
4.2.4. Occlusion in Imaging Systems
4.2.5. Patient Position Change
4.2.6. Obscuration by Bed Clothing or Bed Sheets
4.2.7. Real-Time Constraint
4.2.8. Number of Respiratory Elements Estimated Simultaneously
4.2.9. Algorithm Complexity
4.2.10. Age Category
4.2.11. Chest Wall Anomalies
4.3. How Can Non-Contact Systems Help Address Some of the Current and Urgent Health Issues in the Present Year (2020)?
5. Conclusions
5.1. Artificial Intelligence Application
5.2. Promoting More Imaging Technology for Data Acquisition
5.3. Multidisciplinary Approaches Promoting
Author Contributions
Funding
Conflicts of Interest
Appendix A. Summary of Respiratory Elements
Appendix A.1. Respiratory Rate
Appendix A.2. Respiratory Volumes
Physiological Parameter Description | Acronym |
---|---|
Vital capacity | VC |
Tidal volume | Vt |
Forced vital capacity | FVC |
Functional Residual Capacity | FRC |
Forced expiratory volume at timed intervals of 0.5 s after full inspiration | FEV |
Forced expiratory volume of 1 s | FEV1 |
Forced expiratory volume at timed intervals of 2 s | FEV2 |
Forced expiratory volume at timed intervals of 3 s | FEV3 |
Forced expiratory flow 25–75% | FEF 25–75 |
Maximal voluntary ventilation or Maximum breathing capacity | MVV |
Expiratory reserve volume | ERV |
Inspiratory capacity | IC |
Inspiratory vital capacity | IVC |
Total lungs capacity | TLC |
Appendix A.3. Blood Gas Concentrations
Appendix A.4. Chest Wall Motion
Appendix B. Overview on Non-Contact Technologies
Appendix B.1. Radar Sensors
Appendix B.2. Cross-Sectional, Ultrasound, Radiography, and Fluoroscopy Imaging Sensors
Appendix B.3. RGB and Thermal Sensors
Appendix B.4. Depth Sensors, SL, ToF, and ASV Technologies
References
- Seddon, P. Options for Assessing and Measuring Chest Wall Motion. Paediatr. Respir. Rev. 2015, 16, 3–10. [Google Scholar] [CrossRef] [PubMed]
- De Groote, A.; Wantier, M.; Cheron, G.; Estenne, M.; Paiva, M. Chest wall motion during tidal breathing. J. Appl. Physiol. 1997, 83, 1531–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tukanova, K.; Papi, E.; Jamel, S.; Hanna, G.B.; McGregor, A.H.; Markar, S.R. Assessment of chest wall movement following thoracotomy: A systematic review. J. Thorac. Dis. 2020, 12, 1031. [Google Scholar] [CrossRef] [PubMed]
- Di Tocco, J.; Massaroni, C.; Bravi, M.; Miccinilli, S.; Sterzi, S.; Formica, D.; Schena, E. Evaluation of thoraco-abdominal asynchrony using conductive textiles. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Ashutosh, K.; Gilbert, R.; Auchincloss, J.H.; Erlebacher, J.; Peppi, D. Impedance pneumograph and magnetometer methods for monitoring tidal volume. J. Appl. Physiol. 1974, 37, 964–966. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, V.; Mirmehdi, M.; Damen, D.; Dodd, J.; Hannuna, S.; Sharp, C.; Camplani, M.; Viner, J.; Member, S.S.; Mirmehdi, M.; et al. Remote, depth-based lung function assessment. IEEE Trans. Biomed. Eng. 2016, 64, 1943–1958. [Google Scholar] [CrossRef] [Green Version]
- Saasouh, W.; Duke, P. Comparison of Noninvasive Respiratory Volume Monitoring and Pneumotachometry in Spontaneously Breathing Individuals. Am. J. Respir. Crit. Care Med. 2019, 199, A2239. [Google Scholar]
- Bates, A.J.; Schuh, A.; Amine-Eddine, G.; McConnell, K.; Loew, W.; Fleck, R.J.; Woods, J.C.; Dumoulin, C.L.; Amin, R.S. Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging. Clin. Biomech. 2019, 66, 88–96. [Google Scholar] [CrossRef]
- Chu, M.; Nguyen, T.; Pandey, V.; Zhou, Y.; Pham, H.N.; Bar-Yoseph, R.; Radom-Aizik, S.; Jain, R.; Cooper, D.M.; Khine, M. Respiration rate and volume measurements using wearable strain sensors. NPJ Digit. Med. 2019, 2, 1–9. [Google Scholar] [CrossRef]
- Massaroni, C.; Lo Presti, D.; Formica, D.; Silvestri, S.; Schena, E. Non-contact monitoring of breathing pattern and respiratory rate via RGB signal measurement. Sensors 2019, 19, 2758. [Google Scholar] [CrossRef] [Green Version]
- Brieva, J.; Ponce, H.; Moya-Albor, E. Non-contact breathing rate monitoring system using a magnification technique and convolutional networks. In Proceedings of the 15th International Symposium on Medical Information Processing and Analysis, Medellin, Colombia, 6–8 November 2019; Volume 11330, p. 113300P. [Google Scholar]
- Yang, F.; He, Z.; Guo, S.; Fu, Y.; Li, L.; Lu, J.; Jiang, K. Non-Contact Driver Respiration Rate Detection Technology Based on Suppression Of Multipath Interference with Directional Antenna. Information 2020, 11, 192. [Google Scholar] [CrossRef] [Green Version]
- Charlton, P.H.; Birrenkott, D.A.; Bonnici, T.; Pimentel, M.A.F.; Johnson, A.E.W.; Alastruey, J.; Tarassenko, L.; Watkinson, P.J.; Beale, R.; Clifton, D.A. Breathing Rate Estimation from the Electrocardiogram and Photoplethysmogram: A Review. IEEE Rev. Biomed. Eng. 2018, 11, 2–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minolta, K. Basic understanding of the pulse oximeter. How to read spo2. Konica Minolta Sens. Inc. Ramsey 2006, 1, 1–5. [Google Scholar]
- Aramendi, E.; Alonso, E.; Russell, J.K.; Daya, M.; González-Otero, D.; Ayala, U. Monitoring respiratory rate with capnography during cardiopulmonary resuscitation. Resuscitation 2014, 85, S26–S27. [Google Scholar] [CrossRef]
- Shelley, K.H. Photoplethysmography: Beyond the calculation of arterial oxygen saturation and heart rate. Anesth. Analg. 2007, 105, S31–S36. [Google Scholar] [CrossRef] [Green Version]
- Lenz, G.; Heipertz, W.; Epple, E. Capnometry for continuous postoperative monitoring of nonintubated, spontaneously breathing patients. J. Clin. Monit. 1991, 7, 245–248. [Google Scholar] [CrossRef]
- Folke, M.; Granstedt, F.; Hök, B.; Scheer, H. Comparative provocation test of respiratory monitoring methods. J. Clin. Monit. Comput. 2002, 17, 97–103. [Google Scholar] [CrossRef]
- Al-Khalidi, F.Q.; Saatchi, R.; Burke, D.; Elphick, H.; Tan, S. Respiration rate monitoring methods: A review. Pediatr. Pulmonol. 2011, 46, 523–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Duan, Y. Breath Analysis: Potential for Clinical Diagnosis and Exposure Assessment. Clin. Chem. 2006, 811, 800–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Criée, C.P.; Sorichter, S.; Smith, H.J.; Kardos, P.; Merget, R.; Heise, D.; Berdel, D.; Köhler, D.; Magnussen, H.; Marek, W.; et al. Body plethysmography—Its principles and clinical use. Respir. Med. 2011, 105, 959–971. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, A.L.; Peslin, R.; Rodenstein, D.; Stocks, J. Measurement of lung volumes by plethysmography. Eur. Respir. J. 1997, 10, 1415–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soleimani, V.; Mirmehdi, M.; Damen, D.; Hannuna, S.; Camplani, M.; Viner, J.; Dodd, J. Remote pulmonary function testing using a depth sensor. In Proceedings of the 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015. [Google Scholar] [CrossRef]
- Carter, E.R.; Stecenko, A.A.; Pollock, B.H.; Jaeger, M.J. Evaluation of the interrupter technique for the use of assessing airway obstruction in children. Pediatr. Pulmonol. 1994, 17, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Ayuk, A.C.; Uwaezuoke, S.N.; Ndukwu, C.I.; Ndu, I.K.; Iloh, K.K.; Okoli, C.V. Spirometry in asthma care: A review of the trends and challenges in pediatric practice. Clin. Med. Insights Pediatr. 2017, 11, 1179556517720675. [Google Scholar] [CrossRef] [Green Version]
- Tobin, M.J. Respiratory Monitoring in the Intensive Care Unit. Am. Rev. Respir. Dis. 1988, 138, 1625–1642. [Google Scholar] [CrossRef] [PubMed]
- Perez, W.; Tobin, M.J. Separation of factors responsible for change in breathing pattern induced by instrumentation. J. Appl. Physiol. 1985, 59, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Van Gastel, M.; Stuijk, S.; de Haan, G. Robust respiration detection from remote photoplethysmography. Biomed. Opt. Express 2016, 7, 4941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, H.; Nakamura, H.; Fumoto, K.; Nakahara, K.; Teraoka, M. Basic study on non-contact respiration measurement during exercise tolerance test by using kinect sensor. In Proceedings of the 2015 IEEE/SICE International Symposium on System Integration (SII), Nagoya, Japan, 11–13 December 2015; pp. 217–222. [Google Scholar] [CrossRef]
- Lovell, D.; Cheung, J.; Perrin, D. Promises and Challenges in the Use of Consumer-Grade Devices for Sleep Monitoring. IEEE Rev. Biomed. Eng. 2018, 11, 53–67. [Google Scholar] [CrossRef]
- Rehouma, H.; Noumeir, R.; Jouvet, P.; Bouachir, W.; Essouri, S. A computer vision method for respiratory monitoring in intensive care environment using RGB-D cameras. In Proceedings of the 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28 November–1 December 2017. [Google Scholar]
- McClelland, J.R.; Hawkes, D.J.; Schaeffter, T.; King, A.P. Respiratory motion models: A review. Med. Image Anal. 2013, 17, 19–42. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Jahan, S.A.; Kabir, E. A review of breath analysis for diagnosis of human health. TrAC Trends Anal. Chem. 2012, 33, 1–8. [Google Scholar] [CrossRef]
- Folke, M.; Cernerud, L.; Ekström, M.; Hök, B. Critical review of non-invasive respiratory monitoring in medical care. Med. Biol. Eng. Comput. 2003, 41, 377–383. [Google Scholar] [CrossRef]
- Sarbolandi, H.; Lefloch, D.; Kolb, A. Kinect range sensing: Structured-light versus Time-of-Flight Kinect. Comput. Vis. Image Underst. 2015, 139, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Keselman, L.; Woodfill, J.I.; Grunnet-Jepsen, A.; Bhowmik, A. Intel RealSense Stereoscopic Depth Cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1267–1276. [Google Scholar] [CrossRef]
- Pöhlmann, S.T.L.; Harkness, E.F.; Taylor, C.J.; Astley, S.M. Evaluation of Kinect 3D Sensor for Healthcare Imaging. J. Med. Biol. Eng. 2016, 36, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Lachat, E.; Macher, H.; Mittet, M.A.; Landes, T.; Grussenmeyer, P. First experiences with kinect V2 sensor for close range 3D modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2015, 40, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Khoshelham, K.; Elberink, S.O. Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 2012, 12, 1437–1454. [Google Scholar] [CrossRef] [Green Version]
- Mallick, T.; Das, P.P.; Majumdar, A.K. Characterizations of noise in Kinect depth images: A review. IEEE Sens. J. 2014, 14, 1731–1740. [Google Scholar] [CrossRef]
- Massaroni, C.; Nicolò, A.; Lo Presti, D.; Sacchetti, M.; Silvestri, S.; Schena, E. Contact-based methods for measuring respiratory rate. Sensors 2019, 19, 908. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Yoo, S.K. Radar-Based Detection of Respiration Rate with Adaptive Harmonic Quefrency Selection. Sensors 2020, 20, 1607. [Google Scholar] [CrossRef] [Green Version]
- Phokela, K.K.; Naik, V. Use of Smartphone’s Headset Microphone to Estimate the Rate of Respiration. In Proceedings of the 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 7–11 January 2020; pp. 64–69. [Google Scholar]
- Rehouma, H.; Noumeir, R.; Essouri, S.; Jouvet, P. Quantitative Assessment of Spontaneous Breathing in Children: Evaluation of a Depth Camera System. IEEE Trans. Instrum. Meas. 2020, 69, 4955–4967. [Google Scholar] [CrossRef]
- Reyes, M.E.P.; Dorta_Palmero, J.; Diaz, J.L.; Aragon, E.; Taboada-Crispi, A. Computer Vision-Based Estimation of Respiration Signals. In Proceedings of the Latin American Conference on Biomedical Engineering, Cancún, Mexico, 2–5 October 2019; pp. 252–261. [Google Scholar]
- Saegusa, R.; Ito, H.; Duong, D.M. Human-Care Rounds Robot with Contactless Breathing Measurement. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6172–6177. [Google Scholar]
- Mateu-Mateus, M.; Guede-Fernández, F.; Garcia-González, M.A.; Ramos-Castro, J.; Fernandez-Chimeno, M. Non-Contact Infrared-Depth Camera-Based Method for Respiratory Rhythm Measurement While Driving. IEEE Access 2019, 7, 152522–152532. [Google Scholar] [CrossRef]
- Pereira, C.B.; Yu, X.; Goos, T.; Reiss, I.; Orlikowsky, T.; Heimann, K.; Venema, B.; Blazek, V.; Leonhardt, S.; Teichmann, D. Noncontact monitoring of respiratory rate in newborn infants using thermal imaging. IEEE Trans. Biomed. Eng. 2018, 66, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Bocca, M.; Jain, V.; Mohapatra, P. Contactless breathing rate monitoring in vehicle using UWB radar. In Proceedings of the 7th International Workshop on Real-World Embedded Wireless Systems and Networks, Shenzhen, China, 4–7 November 2018; pp. 13–18. [Google Scholar]
- Schoun, B.; Transue, S.; Halbower, A.C.; Choi, M.-H. Non-contact tidal volume measurement through thin medium thermal imaging. Smart Health 2018, 9, 37–49. [Google Scholar] [CrossRef]
- Jorge, J.; Villarroel, M.; Chaichulee, S.; Guazzi, A.; Davis, S.; Green, G.; McCormick, K.; Tarassenko, L. Non-contact monitoring of respiration in the neonatal intensive care unit. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 286–293. [Google Scholar]
- Liu, H.; Guo, S.; Zheng, K.; Guo, X.; Kuramoto-Ahuja, T.; Sato, T.; Onoda, K.; Maruyama, H. Reliability and validity of measuring respiration movement using a wearable strain sensor in healthy subjects. J. Phys. Ther. Sci. 2017, 29, 1543–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, M.; Stiefelhagen, R. Breathing rate monitoring during sleep from a depth camera under real-life conditions. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 1168–1176. [Google Scholar]
- Alinovi, D.; Cattani, L.; Ferrari, G.; Pisani, F.; Raheli, R. Spatio-temporal video processing for respiratory rate estimation. In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, Turin, Italy, 7–9 May 2015. [Google Scholar]
- Tan, K.S.; Saatchi, R.; Elphick, H.; Burke, D. Real-time vision based respiration monitoring system. In Proceedings of the 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), Newcastle upon Tyne, UK, 21–23 July 2010; pp. 770–774. [Google Scholar] [CrossRef]
- Min, S.D.; Kim, J.K.; Shin, H.S.; Yun, Y.H.; Lee, C.K.; Lee, M. Noncontact Respiration Rate Measurement System Using an Ultrasonic Proximity Sensor. IEEE Sens. J. 2010, 10, 1732–1739. [Google Scholar] [CrossRef]
- AL-Khalidi, F.Q.; Saatchi, R.; Burke, D.; Elphick, H. Facial tracking method for noncontact respiration rate monitoring. In Proceedings of the 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), Newcastle upon Tyne, UK, 21–23 July 2010. [Google Scholar]
- Schumm, J.; Setz, C.; Bächlin, M.; Bächler, M.; Arnrich, B.; Tröster, G. Unobtrusive physiological monitoring in an airplane seat. Pers. Ubiquitous Comput. 2010, 14, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Matos, C.M.P.; Moraes, K.S.; França, D.C.; Tomich, G.M.; Farah, M.W.; Dias, R.C.; Parreira, V.F. Changes in breathing pattern and thoracoabdominal motion after bariatric surgery: A longitudinal study. Respir. Physiol. Neurobiol. 2012, 181, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Aoki, H.; Miyazaki, M.; Nakamura, H.; Furukawa, R.; Sagawa, R.; Kawasaki, H. Non-contact respiration measurement using structured light 3-d sensor. In Proceedings of the 2012 SICE Annual Conference (SICE), Akita, Japan, 20–23 August 2012; pp. 614–618. [Google Scholar]
- Wu, H.-Y.; Rubinstein, M.; Shih, E.; Guttag, J.; Durand, F.; Freeman, W. Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 2012, 31, 1–8. [Google Scholar] [CrossRef]
- Alnowami, M.; Alnwaimi, B.; Tahavori, F.; Copland, M.; Wells, K. A quantitative assessment of using the Kinect for Xbox360 for respiratory surface motion tracking. In Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling; SPIE International Society for Optics and Photonics: San Diego, CA, USA, 2012. [Google Scholar]
- Lewis, G.F.; Gatto, R.G.; Porges, S.W. A novel method for extracting respiration rate and relative tidal volume from infrared thermography. Psychophysiology 2011, 48, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Rodr\’\iguez-Ibáñez, N.; Garc\’\ia-González, M.A.; Fernández-Chimeno, M.; Ramos-Castro, J. Drowsiness detection by thoracic effort signal analysis in real driving environments. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6055–6058. [Google Scholar]
- Bernacchia, N.; Scalise, L.; Casacanditella, L.; Ercoli, I.; Marchionni, P.; Tomasini, E.P. Non contact measurement of heart and respiration rates based on KinectTM. In Proceedings of the 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lisboa, Portugal, 11–12 June 2014. [Google Scholar]
- Wang, C.-W.; Hunter, A.; Gravill, N.; Matusiewicz, S. Unconstrained Video Monitoring of Breathing Behavior and Application to Diagnosis of Sleep Apnea. IEEE Trans. Biomed. Eng. 2014, 61, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Adib, F.; Mao, H.; Kabelac, Z.; Katabi, D.; Miller, R.C. Smart homes that monitor breathing and heart rate. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; pp. 837–846. [Google Scholar]
- Sun, L.; Hong, H.; Li, Y.; Gu, C.; Xi, F.; Li, C.; Zhu, X. Noncontact vital sign detection based on stepwise atomic norm minimization. IEEE Signal Process. Lett. 2015, 22, 2479–2483. [Google Scholar] [CrossRef]
- Kumar, M.; Veeraraghavan, A.; Sabharwal, A. DistancePPG: Robust non-contact vital signs monitoring using a camera. Biomed. Opt. Express 2015, 6, 1565–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poh, M.-Z.; McDuff, D.J.; Picard, R.W. Advancements in Noncontact, Multiparameter Physiological Measurements Using a Webcam. IEEE Trans. Biomed. Eng. 2011, 58, 7–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattani, L.; Kouamou Ntonfo, G.M.; Lofino, F.; Ferrari, G.; Raheli, R.; Pisani, F. Maximum-likelihood detection of neonatal clonic seizures by video image processing. In Proceedings of the 2014 8th International Symposium on Medical Information and Communication Technology (ISMICT), Firenze, Italy, 2–4 April 2014. [Google Scholar]
- Park, C.; Lee, B. Real-time estimation of respiratory rate from a photoplethysmogram using an adaptive lattice notch filter. Biomed. Eng. Online 2014, 13, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benetazzo, F.; Freddi, A.; Monteriù, A.; Longhi, S. Respiratory rate detection algorithm based on RGB-D camera: Theoretical background and experimental results. Healthc. Technol. Lett. 2014, 1, 81–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, G.; Drost, N.; McIvor, R. Respiratory rate and breathing pattern. McMaster Univ. Med. J. 2013, 10, 23–25. [Google Scholar] [CrossRef]
- Burba, N.; Bolas, M.; Krum, D.M.; Suma, E.A. Unobtrusive measurement of subtle nonverbal behaviors with the Microsoft Kinect. In Proceedings of the 2012 IEEE Virtual Reality Workshops (VRW), Costa Mesa, CA, USA, 4–8 March 2012. [Google Scholar]
- Martinez, M.; Stiefelhagen, R. Breath rate monitoring during sleep using near-IR imagery and PCA. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 3472–3475. [Google Scholar]
- Bai, Y.-W.; Li, W.-T.; Chen, Y.-W. Design and implementation of an embedded monitor system for detection of a patient’s breath by double Webcams in the dark. In Proceedings of the 12th IEEE International Conference on e-Health Networking, Applications and Services, Lyon, France, 1–3 July 2010. [Google Scholar]
- Whiting, P.; Elwenspoek, M. Accuracy of Self-Monitoring Heart Rate, Respiratory Rate and Oxygen Saturation in Patients with Symptoms Suggestive of COVID Infection. 2020. Available online: https://arc-w.nihr.ac.uk/research-and-implementation/covid-19-response/accuracy-of-self-monitoring-heart-rate-respiratory-rate-and-oxygen-saturation-in-patients-with-symptoms-suggestive-of-covid-infection/ (accessed on 6 November 2020).
- Hill, B.; Annesley, S.H. Monitoring respiratory rate in adults. Br. J. Nurs. 2020, 29, 12–16. [Google Scholar] [CrossRef]
- Goldfine, C.E.; Oshim, F.T.; Carreiro, S.P.; Chapman, B.P.; Ganesan, D.; Rahman, T. Respiratory Rate Monitoring in Clinical Environments with a Contactless Ultra-Wideband Impulse Radar-based Sensor System. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Grand Wailea, HI, USA, 7–10 January 2020. [Google Scholar]
- Brieva, J.; Ponce, H.; Moya-Albor, E. A Contactless Respiratory Rate Estimation Method Using a Hermite Magnification Technique and Convolutional Neural Networks. Appl. Sci. 2020, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Allen, J.; Zheng, D.; Chen, F. Recent development of respiratory rate measurement technologies. Physiol. Meas. 2019, 40, 07TR01. [Google Scholar] [CrossRef] [Green Version]
- Anton, O.; Wertheim, D.; Olden, C.; Seddon, P. Respiratory rate monitoring from pulse oximetry to assess treatment response in acute preschool wheeze. Eur. Respir. J. 2019, 54, PA958. [Google Scholar]
- Yiǧitler, H.; Kaltiokallio, O.J.; Hostettler, R.; Abrar, A.S.; Jantti, R.; Patwari, N.; Särkkä, S. RSS models for respiration rate monitoring. IEEE Trans. Mob. Comput. 2019, 19, 680–696. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lin, Y.; Wang, J. A RR interval based automated apnea detection approach using residual network. Comput. Methods Programs Biomed. 2019, 176, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Shakhih, M.F.M.; Wahab, A.A.; Salim, M.I.M. Assessment of inspiration and expiration time using infrared thermal imaging modality. Infrared Phys. Technol. 2019, 99, 129–139. [Google Scholar] [CrossRef]
- Ciattaglia, G.; Senigagliesi, L.; De Santis, A.; Ricciuti, M. Contactless measurement of physiological parameters. In Proceedings of the 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany, 8–11 September 2019; pp. 22–26. [Google Scholar]
- Kamp, M.R.; Thio, B.J.; de Jongh, F.H.C.; Driessen, J.M.M. Monitoring of the Respiratory Rate Recovery Time in Children with Asthma. Am. J. Respir. Crit. Care Med. 2020, 201, A7179. [Google Scholar]
- Rehouma, H.; Noumeir, R.; Bouachir, W.; Jouvet, P.; Essouri, S. 3D imaging system for respiratory monitoring in pediatric intensive care environment. Comput. Med. Imaging Graph. 2018, 70, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Ostadabbas, S.; Sebkhi, N.; Zhang, M.; Rahim, S.; Anderson, L.J.; Lee, F.E.-H.; Ghovanloo, M. A Vision-Based Respiration Monitoring System for Passive Airway Resistance Estimation. IEEE Trans. Biomed. Eng. 2016, 63, 1904–1913. [Google Scholar] [CrossRef] [PubMed]
- Procházka, A.; Schätz, M.; Vyšata, O.; Vališ, M. Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis. Sensors 2016, 16, 996. [Google Scholar] [CrossRef] [Green Version]
- Nosrati, M.; Shahsavari, S.; Lee, S.; Wang, H.; Tavassolian, N. A concurrent dual-beam phased-array Doppler radar using MIMO beamforming techniques for short-range vital-signs monitoring. IEEE Trans. Antennas Propag. 2019, 67, 2390–2404. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, J. Non-Contact Measurement of Human Respiration and Heartbeat Using W-band Doppler Radar Sensor. Sensors 2020, 20, 5209. [Google Scholar] [CrossRef]
- Yaakov, L. Jane’s Defence News, Jane’s Information Group; IHS Inc.: London, UK, 2020. [Google Scholar]
- Islam, S.M.M.; Yavari, E.; Rahman, A.; Lubecke, V.M.; Boric-Lubecke, O. Multiple Subject Respiratory Pattern Recognition and Estimation of Direction of Arrival using Phase-Comparison Monopulse Radar. In Proceedings of the 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, FL, USA, 20–23 January 2019; pp. 1–4. [Google Scholar]
- Ripoll, E.M.; Hernández, J.L.; Gómez, N.A.; Sanahuja, J.S.S.; Ibáñez, N.R.; Veleff, S.; Blanco, J.G.; i Pérez, E.S. Cameras to combat falling asleep at the wheel Featured. Rev. Biomec. 2016, 63, 5–15. [Google Scholar]
- Chen, Q.; Liu, Y.; Tan, B.; Woodbridge, K.; Chetty, K. Respiration and Activity Detection Based on Passive Radio Sensing in Home Environments. IEEE Access 2020, 8, 12426–12437. [Google Scholar] [CrossRef]
- Reyes, B.A.; Reljin, N.; Kong, Y.; Nam, Y.; Chon, K.H. Tidal Volume and Instantaneous Respiration Rate Estimation using a Volumetric Surrogate Signal Acquired via a Smartphone Camera. IEEE J. Biomed. Health Inform. 2016, 21, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Sirevaag, E.J.; Casaccia, S.; Richter, E.A.; O’Sullivan, J.A.; Scalise, L.; Rohrbaugh, J.W. Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry. Psychophysiology 2016, 53, 847–867. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Prathosh, A.P.; Praveena, P.; Upadhya, V. Real-Time Visual Respiration Rate Estimation with Dynamic Scene Adaptation. In Proceedings of the 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, Taiwan, 31 Octobor–2 November 2016; pp. 154–160. [Google Scholar] [CrossRef]
- Aoki, H.; Nakamura, H. Non-Contact Respiration Measurement during Exercise Tolerance Test by Using Kinect Sensor. Sports 2018, 6, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nosrati, M.; Shahsavari, S.; Tavassolian, N. Multi-target vital-signs monitoring using a dual-beam hybrid Doppler radar. In Proceedings of the 2018 IEEE International Microwave Biomedical Conference (IMBioC), Philadelphia, PA, USA, 14–15 June 2018; pp. 58–60. [Google Scholar]
- Sun, C.; Li, W.; Chen, C.; Wang, Z.; Chen, W. An Unobtrusive and Non-Contact Method for Respiratory Measurement With Respiratory Region Detecting Algorithm Based on Depth Images. IEEE Access 2018, 7, 8300–8315. [Google Scholar] [CrossRef]
- Guede-Fernández, F.; Fernández-Chimeno, M.; Ramos-Castro, J.; García-González, M.A. Driver drowsiness detection based on respiratory signal analysis. IEEE Access 2019, 7, 81826–81838. [Google Scholar] [CrossRef]
- Elphick, H.E.; Alkali, A.H.; Kingshott, R.K.; Burke, D.; Saatchi, R. Exploratory study to evaluate respiratory rate using a thermal imaging camera. Respiration 2019, 97, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Kwasniewska, A.; Szankin, M.; Ruminski, J.; Kaczmarek, M. Evaluating Accuracy of Respiratory Rate Estimation from Super Resolved Thermal Imagery. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2744–2747. [Google Scholar]
- Yang, C.; Bruce, B.; Liu, X.; Gholami, B.; Tavassolian, N. A Hybrid Radar-Camera Respiratory Monitoring System Based on an Impulse-Radio Ultrawideband Radar. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 2646–2649. [Google Scholar]
- Nazir, S.; Pateau, V.; Bert, J.; Clement, J.F.; Fayad, H.; l’Her, E.; Visvikis, D. Surface imaging for real-time patient respiratory function assessment in intensive care. Med. Phys. 2020. [Google Scholar] [CrossRef]
- Schätz, M.; Procházka, A.; Kuchyvnka, J.; Vyšata, O. Sleep Apnea Detection with Polysomnography and Depth Sensors. Sensors 2020, 20, 1360. [Google Scholar]
- Shan, Y.; Li, S.; Chen, T. Respiratory signal and human stress: Non-contact detection of stress with a low-cost depth sensing camera. Int. J. Mach. Learn. Cybern. 2020, 11, 1825–1837. [Google Scholar] [CrossRef]
- Nishidate, I.; Minakawa, M.; McDuff, D.; Wares, M.D.A.; Nakano, K.; Haneishi, H.; Aizu, Y.; Niizeki, K. Simple and affordable imaging of multiple physiological parameters with RGB camera-based diffuse reflectance spectroscopy. Biomed. Opt. Express 2020, 11, 1073–1091. [Google Scholar] [CrossRef]
- Jagadev, P.; Giri, L.I. Non-contact monitoring of human respiration using infrared thermography and machine learning. Infrared Phys. Technol. 2020, 104, 103117. [Google Scholar] [CrossRef]
- Jagadev, P.; Giri, L.I. Human respiration monitoring using infrared thermography and artificial intelligence. Biomed. Phys. Eng. Express 2020, 6, 35007. [Google Scholar] [CrossRef]
- Yu, M.-C.; Liou, J.-L.; Kuo, S.-W.; Lee, M.-S.; Hung, Y.-P. Noncontact respiratory measurement of volume change using depth camera. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Bernal, E.A.; Mestha, L.K.; Shilla, E. Non contact monitoring of respiratory function via depth sensing. In Proceedings of the 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Valencia, Spain, 1–4 June 2014; pp. 101–104. [Google Scholar]
- Ostadabbas, S.; Bulach, C.; Ku, D.N.; Anderson, L.J.; Ghovanloo, M. A passive quantitative measurement of airway resistance using depth data. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014. [Google Scholar]
- De Boer, W.; Lasenby, J.; Cameron, J.; Wareham, R.; Ahmad, S.; Roach, C.; Hills, W.; Iles, R. SLP: A Zero-Contact Non-Invasive Method for Pulmonary Function Testing. In Proceedings of the British Machine Vision Conference (BMVC 2010), Aberystwyth, Wales, UK, 30 August–2 September 2010; pp. 1–12. [Google Scholar]
- De Melo Barcelar, J.; Aliverti, A.; de Barros Melo, T.L.L.; Dornelas, C.S.; Lima, C.S.F.R.; Reinaux, C.M.A.; de Andrade, A.D. Chest wall regional volumes in obese women. Respir. Physiol. Neurobiol. 2013, 189, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Blocker, S.J.; Holbrook, M.D.; Mowery, Y.M.; Sullivan, D.C.; Badea, C.T. The impact of respiratory gating on improving volume measurement of murine lung tumors in micro-CT imaging. PLoS ONE 2020, 15, e0225019. [Google Scholar] [CrossRef] [PubMed]
- Sharp, C.; Soleimani, V.; Hannuna, S.; Camplani, M.; Damen, D.; Viner, J.; Mirmehdi, M.; Dodd, J.W. Toward Respiratory Assessment Using Depth Measurements from a Time-of-Flight Sensor. Front. Physiol. 2017, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Reinaux, C.M.A.; Aliverti, A.; da Silva, L.G.M.; da Silva, R.J.; Gonçalves, J.N.; Noronha, J.B.; Filho, J.E.C.; de Andrade, A.D.; de Amorim Britto, M.C. Tidal volume measurements in infants: Opto-electronic plethysmography versus pneumotachograph. Pediatr. Pulmonol. 2016, 51, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Transue, S.; Nguyen, P.; Vu, T.; Choi, M.-H. Real-Time Tidal Volume Estimation Using Iso-surface Reconstruction. In Proceedings of the 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA, 27–29 June 2016. [Google Scholar]
- Guazzi, A.R.; Villarroel, M.; Jorge, J.; Daly, J.; Frise, M.C.; Robbins, P.A.; Tarassenko, L. Non-contact measurement of oxygen saturation with an RGB camera. Biomed. Opt. Express 2015, 6, 3320–3338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghazal, S.; Sauthier, M.; Brossier, D.; Bouachir, W.; Jouvet, P.A.; Noumeir, R. Using machine learning models to predict oxygen saturation following ventilator support adjustment in critically ill children: A single center pilot study. PLoS ONE 2019, 14, e0198921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendonça, F.; Mostafa, S.S.; Morgado-Dias, F.; Ravelo-Garcia, A.G. An Oximetry Based Wireless Device for Sleep Apnea Detection. Sensors 2020, 20, 888. [Google Scholar]
- Povšič, K.; Jezeršek, M.; Možina, J. Real-time 3D visualization of the thoraco-abdominal surface during breathing with body movement and deformation extraction. Physiol. Meas. 2015, 36, 1497–1516. [Google Scholar] [CrossRef]
- Seppanen, T.M.; Kananen, J.; Noponen, K.; Alho, O.-P.; Seppanen, T. Accurate measurement of respiratory airflow waveforms using depth data. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015. [Google Scholar]
- Parreira, V.F.; Bueno, C.J.; França, D.C.; Vieira, D.S.; Pereira, D.R.; Britto, R.R. Breathing pattern and thoracoabdominal motion in healthy individuals: Influence of age and sex. Rev. Bras. Fisioter. 2010, 14, 411–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, C.; Schaller, C.; Penne, J.; Hornegger, J. Evaluation of a Time-of-Flight-based Respiratory Motion Management System. In Proceedings of the Bildverarbeitung für die Medizin, Anwendungen, Aachen, Germany, 14–16 March 2010; pp. 152–156. [Google Scholar]
- Schaerer, J.; Fassi, A.; Riboldi, M.; Cerveri, P.; Baroni, G.; Sarrut, D. Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration. Phys. Med. Biol. 2011, 57, 357–373. [Google Scholar] [CrossRef]
- Kaneko, H.; Horie, J. Breathing Movements of the Chest and Abdominal Wall in Healthy Subjects. Respir. Care 2012, 57, 1442–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noonan, P.J.; Howard, J.; Tout, D.; Armstrong, I.; Williams, H.A.; Cootes, T.F.; Hallett, W.A.; Hinz, R. Accurate markerless respiratory tracking for gated whole body PET using the Microsoft Kinect. In Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA, USA, 27 October–3 November 2012. [Google Scholar]
- Xia, J.; Siochi, R.A. A real-time respiratory motion monitoring system usingKINECT: Proof of concept. Med. Phys. 2012, 39, 2682–2685. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhang, H.; Xie, Y. Respiratory motion tracking with a multi-camera vision system. In Proceedings of the 2013 IEEE International Conference on Medical Imaging Physics and Engineering, Shenyang, China, 19–20 October 2013. [Google Scholar]
- Quirk, S.; Becker, N.; Smith, W.L. External respiratory motion analysis and statistics for patients and volunteers. J. Appl. Clin. Med. Phys. 2013, 14, 4051. [Google Scholar] [CrossRef]
- Wadhwa, N.; Rubinstein, M.; Durand, F.; Freeman, W.T. Phase-based video motion processing. ACM Trans. Graph. 2013, 32, 1. [Google Scholar] [CrossRef] [Green Version]
- White, B.M.; Zhao, T.; Lamb, J.; Bradley, J.D.; Low, D.A. Quantification of the thorax-to-abdomen breathing ratio for breathing motion modeling. Med. Phys. 2013, 40, 63502. [Google Scholar] [CrossRef] [Green Version]
- Spinczyk, D.; Karwan, A.; Copik, M. Methods for abdominal respiratory motion tracking. Comput. Aided Surg. 2014, 19, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Tahavori, F.; Alnowami, M.; Wells, K. Marker-Less Respiratory Motion Modeling Using the Microsoft Kinect for Windows; SPIE: San Diego, CA, USA, 2014; Volume 9036, p. 90360K. [Google Scholar]
- Tahavori, F.; Alnowami, M.; Jones, J.; Elangovan, P.; Donovan, E.; Wells, K. Assessment of Microsoft Kinect technology (Kinect for Xbox and Kinect for windows) for patient monitoring during external beam radiotherapy. In Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul, Korea, 27 Octobor–2 November 2013; pp. 1–5. [Google Scholar]
- King, A.P.; Buerger, C.; Tsoumpas, C.; Marsden, P.K.; Schaeffter, T. Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator. Med. Image Anal. 2012, 16, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.; Kim, J.-B.; Kim, Y.S.; Bang, W.-C.; Kim, J.D.K.; Kim, C. Ultrasound image-based respiratory motion tracking. In Medical Imaging 2012: Ultrasonic Imaging, Tomography, and Therapy; SPIE International Society for Optics and Photonics: San Diego, CA, USA, 2012. [Google Scholar]
- Nutti, B.; Kronander, Å.; Nilsing, M.; Maad, K.; Svensson, C.; Li, H. Depth Sensor-Based Realtime Tumor Tracking for Accurate Radiation Therapy. In Proceedings of the Eurographics (Short Papers), Strasbourg, France, 7–11 April 2014; pp. 1–4. [Google Scholar]
- Tsoli, A.; Mahmood, N.; Black, M.J. Breathing life into shape: Capturing, modeling and animating 3D human breathing. ACM Trans. Graph. 2014, 33, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bodilovskyi, O.K. Non-contact respiration monitoring using optical sensors. Electron. Commun. 2014, 19, 37–46. [Google Scholar] [CrossRef]
- Heß, M.; Büther, F.; Gigengack, F.; Dawood, M.; Schäfers, K.P. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET. Med. Phys. 2015, 42, 2276–2286. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Horie, J.; Ishikawa, A. New scale to assess breathing movements of the chest and abdominal wall: Preliminary reliability testing. J. Phys. Ther. Sci. 2015, 27, 1987–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Hu, M.; Li, Q.; Zhang, X.-P.; Zhai, G.; Yao, N. Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner. arXiv 2020, arXiv:2002.05534. [Google Scholar]
- Harte, J.M.; Golby, C.K.; Acosta, J.; Nash, E.F.; Kiraci, E.; Williams, M.A.; Arvanitis, T.N.; Naidu, B. Chest wall motion analysis in healthy volunteers and adults with cystic fibrosis using a novel Kinect-based motion tracking system. Med. Biol. Eng. Comput. 2016, 54, 1631–1640. [Google Scholar] [CrossRef] [Green Version]
- Laouani, A.; Rouatbi, S. Thorax and Abdomen Motion Analysis in Patients with Obstructive Diseases. J. Pulm. Respir. Med. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Wijenayake, U.; Park, S.-Y. Real-Time External Respiratory Motion Measuring Technique Using an RGB-D Camera and Principal Component Analysis. Sensors 2017, 17, 1840. [Google Scholar] [CrossRef] [Green Version]
- Jorge, J.; ViIllarroel, M.; Chaichulee, S.; McCormick, K.; Tarassenko, L. Data fusion for improved camera-based detection of respiration in neonates. In Optical Diagnostics and Sensing XVIII: Toward Point-of-Care Diagnostics; SPIE International Society for Optics and Photonics: San Diego, CA, USA, 2018. [Google Scholar]
- Dean, M.R.; Martins, N.J.; Brown, J.D.; McCusker, J.; Ma, G.; Dow, D.E. Physical Thorax Model and 2D Grid of Force Sensors to Monitor Respiration. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Salt Lake City, UT, USA, 8–14 November 2019; Volume 59407, p. V003T04A078. [Google Scholar]
- Schade, M.M.; Bauer, C.E.; Murray, B.R.; Gahan, L.; Doheny, E.P.; Kilroy, H.; Zaffaroni, A.; Montgomery-Downs, H.E. Sleep validity of a non-contact bedside movement and respiration-sensing device. J. Clin. Sleep Med. 2019, 15, 1051–1061. [Google Scholar] [CrossRef]
- Delimayanti, M.K.; Purnama, B.; Nguyen, N.G.; Mahmudah, K.R.; Kubo, M.; Kakikawa, M.; Yamada, Y.; Satou, K. Clustering and Classification of Breathing Activities by Depth Image from Kinect. In Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019), Prague, Czech Republic, 22–24 February 2019; pp. 264–269. [Google Scholar]
- Al-Naji, A.; Gibson, K.; Lee, S.-H.; Chahl, J. Real Time Apnoea Monitoring of Children Using the Microsoft Kinect Sensor: A Pilot Study. Sensors 2017, 17, 286. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.; Evans, R.; Saatchi, R.; Kingshott, R.; Elphick, H. Non-invasive respiration monitoring by thermal imaging to detect sleep apnoea. In the 32nd International Congress and Exhibition on Condition Monitoring and Diagnostic Engineering Management (COMADEM); University of Huddersfield: Huddersfield, UK, 2019. [Google Scholar]
- Rehouma, H.; Noumeir, R.; Masson, G.; Essouri, S.; Jouvet, P. Visualizing and quantifying thoraco-abdominal asynchrony in children from motion point clouds: A pilot study. IEEE Access 2019, 7, 163341–163357. [Google Scholar] [CrossRef]
- Fleming, S.; Thompson, M.; Stevens, R.; Heneghan, C.; Plüddemann, A.; Maconochie, I.; Tarassenko, L.; Mant, D. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: A systematic review of observational studies. Lancet 2011, 377, 1011–1018. [Google Scholar] [CrossRef] [Green Version]
- Greneker, E.F., III. Radar sensing of heartbeat and respiration at a distance with security applications. In Radar Sensor Technology II; SPIE International Society for Optics and Photonics: San Diego, CA, USA, 1997. [Google Scholar]
- Droitcour, A.D. Non-Contact Measurement of Heart and Respiration Rates with a Single-Chip Microwave Doppler Radar. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2006. [Google Scholar]
- Li, C.; Peng, Z.; Huang, T.-Y.; Fan, T.; Wang, F.-K.; Horng, T.-S.; Munoz-Ferreras, J.-M.; Gomez-Garcia, R.; Ran, L.; Lin, J. A review on recent progress of portable short-range noncontact microwave radar systems. IEEE Trans. Microw. Theory Tech. 2017, 65, 1692–1706. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Zhang, L.; Court, L.E.; Balter, P.A.; Dong, L. Modeling respiratory motion for reducing motion artifacts in 4D CT images. Med. Phys. 2013, 40, 41716. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Lu, W.; Low, D.A.; Deasy, J.O.; Hope, A.J.; El Naqa, I. 4D-CT motion estimation using deformable image registration and 5D respiratory motion modeling. Med. Phys. 2008, 35, 4577–4590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plathow, C.; Zimmermann, H.; Fink, C.; Umathum, R.; Schöbinger, M.; Huber, P.; Zuna, I.; Debus, J.; Schlegel, W.; Meinzer, H.-P.; et al. Influence of different breathing maneuvers on internal and external organ motion: Use of fiducial markers in dynamic MRI. Int. J. Radiat. Oncol. 2005, 62, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Seppenwoolde, Y.; Berbeco, R.I.; Nishioka, S.; Shirato, H.; Heijmen, B. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: A simulation study. Med. Phys. 2007, 34, 2774–2784. [Google Scholar] [CrossRef]
- Koch, N.; Liu, H.H.; Starkschall, G.; Jacobson, M.; Forster, K.; Liao, Z.; Komaki, R.; Stevens, C.W. Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: Part I—Correlating internal lung motion with skin fiducial motion. Int. J. Radiat. Oncol. 2004, 60, 1459–1472. [Google Scholar] [CrossRef]
- Kotani, T.; Minami, S.; Takahashi, K.; Isobe, K.; Nakata, Y.; Takaso, M.; Inoue, M.; Maruta, T.; Akazawa, T.; Ueda, T.; et al. An Analysis of Chest Wall and Diaphragm Motions in Patients With Idiopathic Scoliosis Using Dynamic Breathing MRI. Spine 2004, 29, 298–302. [Google Scholar] [CrossRef]
- Raichura, N.; Entwisle, J.; Leverment, J.; Beardsmore, C.S. Breath-hold MRI in evaluating patients with pectus excavatum. Br. J. Radiol. 2001, 74, 701–708. [Google Scholar] [CrossRef]
- Chu, W.C.W.; Li, A.M.; Ng, B.K.W.; Chan, D.F.Y.; Lam, T.; Lam, W.W.M.; Cheng, J.C.Y. Dynamic Magnetic Resonance Imaging in Assessing Lung Volumes, Chest Wall, and Diaphragm Motions in Adolescent Idiopathic Scoliosis Versus Normal Controls. Spine 2006, 31, 2243–2249. [Google Scholar] [CrossRef]
- Von Siebenthal, M.; Székely, G.; Gamper, U.; Boesiger, P.; Lomax, A.; Cattin, P. 4D MR imaging of respiratory organ motion and its variability. Phys. Med. Biol. 2007, 52, 1547–1564. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Chang, Z.; Wang, Z.; Paul Segars, W.; Yin, F.-F. Four-dimensional magnetic resonance imaging (4D-MRI) using image-based respiratory surrogate: A feasibility study. Med. Phys. 2011, 38, 6384–6394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Jiang, H.; Chen, J.; Huang, M.-C. Tidal volume estimation using portable ultrasound imaging system. IEEE Sens. J. 2016, 16, 9014–9020. [Google Scholar] [CrossRef]
- Laptev, I.; Marszalek, M.; Schmid, C.; Rozenfeld, B. Learning realistic human actions from movies. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008. [Google Scholar]
- Kotani, T.; Minami, S.; Takahashi, K.; Isobe, K.; Nakata, Y.; Takaso, M.; Inoue, M.; Nishikawa, S.; Maruta, T.; Tamaki, T.; et al. Three dimensional analysis of chest wall motion during breathing in healthy individuals and patients with scoliosis using an ultrasonography-based system. Stud. Health Technol. Inform. 2002, 91, 135–139. [Google Scholar]
- Hargrove, J.; Zemper, E.D.; Jannausch, M.L. Respiratory Measurement Utilizing a Novel Laser Displacement Technique: Normal Tidal Breathing. Biomed. Instrum. Technol. 2009, 43, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Lafortuna, C.L.; Passerini, L. A new instrument for the measurement of rib cage and abdomen circumference variation in respiration at rest and during exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 71, 259–265. [Google Scholar] [CrossRef]
- Ozhasoglu, C.; Murphy, M.J. Issues in respiratory motion compensation during external-beam radiotherapy. Int. J. Radiat. Oncol. 2002, 52, 1389–1399. [Google Scholar] [CrossRef]
- Nakajima, K.; Osa, A.; Maekawa, T.; Miike, H. Evaluation of Body Motion by Optical Flow Analysis. Jpn. J. Appl. Phys. 1997, 36, 2929–2937. [Google Scholar] [CrossRef]
- Nakajima, K.; Matsumoto, Y.; Tamura, T. Development of real-time image sequence analysis for evaluating posture change and respiratory rate of a subject in bed. Physiol. Meas. 2001, 22, N21–N28. [Google Scholar] [CrossRef]
- Wang, W.; Stuijk, S.; de Haan, G. Exploiting Spatial Redundancy of Image Sensor for Motion Robust rPPG. IEEE Trans. Biomed. Eng. 2015, 62, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Kondo, T.; Uhlig, T.; Pemberton, P.; Sly, P.D. Laser monitoring of chest wall displacement. Eur. Respir. J. 1997, 10, 1865–1869. [Google Scholar] [CrossRef] [PubMed]
- Frigola, M.; Amat, J.; Pagès, J. Vision based respiratory monitoring system. In Proceedings of the Proceedings of the 10th Mediterranean Conference on Control and Automation (MED 2002), Lisbon, Portugal, 9–12 July 2002; pp. 9–13. [Google Scholar]
- Wiesner, S.; Yaniv, Z. Monitoring Patient Respiration using a Single Optical Camera. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007. [Google Scholar]
- Murthy, R.; Pavlidis, I. Noncontact measurement of breathing function. IEEE Eng. Med. Biol. Mag. 2006, 25, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Chekmenev, S.Y.; Rara, H.; Farag, A.A. Non-contact, wavelet-based measurement of vital signs using thermal imaging. In Proceedings of the The First International Conference on Graphics, Vision, and Image Processing (GVIP), Cairo, Egypt, 19–21 December 2005; pp. 107–112. [Google Scholar]
- Saatchi, R.; Al-Khayatt, F.Q.; Burke, D.; Elphick, H. Thermal image analysis of the skin surface centred on the tip of the nose for respiration monitoring. In Proceedings of the IEEE organized International Conference on Electronic Design and Signal Processing, Manipal, India, 10–12 December 2009; pp. 10–12. [Google Scholar]
- Murthy, J.N.; van Jaarsveld, J.; Fei, J.; Pavlidis, I.; Harrykissoon, R.I.; Lucke, J.F.; Faiz, S.; Castriotta, R.J. Thermal infrared imaging: A novel method to monitor airflow during polysomnography. Sleep 2009, 32, 1521–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, J.; Pavlidis, I. Analysis of Breathing Air Flow Patterns in Thermal Imaging. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006. [Google Scholar]
- Pavlidis, I.; Dowdall, J.; Sun, N.; Puri, C.; Fei, J.; Garbey, M. Interacting with human physiology. Comput. Vis. Image Underst. 2007, 108, 150–170. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Chow, J.C.H.I. Design and clinic monitoring of a newly developed non-attached infant apnea monitor. Biomed. Eng. Appl. Basis Commun. 2005, 17, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Fei, J.; Pavlidis, I. Tracking Human Breath in Infrared Imaging. In Proceedings of the Fifth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’05), Minneapolis, MN, USA, 19–21 October 2005; pp. 227–231. [Google Scholar]
- Giancola, S.; Valenti, M.; Sala, R. A Survey on 3D Cameras: Metrological Comparison of Time-of-Flight, Structured-Light and Active Stereoscopy Technologies; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Nicolau, S.A.; Brenot, J.; Goffin, L.; Graebling, P.; Soler, L.; Marescaux, J. A structured light system to guide percutaneous punctures in interventional radiology. In Optical and Digital Image Processing; SPIE International Society for Optics and Photonics: San Diego, CA, USA, 2008. [Google Scholar]
- Yang, L.; Zhang, L.; Dong, H.; Alelaiwi, A.; Saddik, A. El Evaluating and Improving the Depth Accuracy of Kinect for Windows v2. IEEE Sens. J. 2015, 15, 4275–4285. [Google Scholar] [CrossRef]
- Bloesch, M.; Rodriguez, D. Kinect v2 for Mobile Robot Navigation: Evaluation and Modeling. In Proceedings of the 2015 International Conference on Advanced Robotics (ICAR), Istanbul, Turkey, 27–31 July 2015; pp. 388–394. [Google Scholar]
- Hernandez-Aceituno, J.; Arnay, R.; Toledo, J.; Acosta, L. Using kinect on an autonomous vehicle for outdoors obstacle detection. IEEE Sens. J. 2016, 16, 3603–3610. [Google Scholar] [CrossRef]
- Zennaro, S. Evaluation of Microsoft Kinect 360 and Microsoft Kinect One for robotics and computer vision applications. Master’s Thesis, University of Padova, Padua, Italy, 2014. [Google Scholar]
- Butkiewicz, T. Low-cost coastal mapping using Kinect v2 time-of-flight cameras. In Proceedings of the 2014 Oceans-St. John’s, St. John’s, NL, Canada, 14–19 September 2014; pp. 1–9. [Google Scholar]
- Zennaro, S.; Munaro, M.; Milani, S.; Zanuttigh, P.; Bernardi, A.; Ghidoni, S.; Menegatti, E. Performance evaluation of the 1st and 2nd generation Kinect for multimedia applications. In Proceedings of the 2015 IEEE International Conference on Multimedia and Expo (ICME), Turin, Italy, 29 June–3 July 2015; pp. 1–6. [Google Scholar]
- Breuer, T.; Bodensteiner, C.; Arens, M. Low-cost commodity depth sensor comparison and accuracy analysis. In Electro-Optical Remote Sensing, Photonic Technologies, and Applications VIII, and Military Applications in Hyperspectral Imaging and High Spatial Resolution Sensing II; SPIE International Society for Optics and Photonics: San Diego, CA, USA, 2014; Volume 9250, p. 92500G. [Google Scholar]
- Diaz, M.G.; Tombari, F.; Rodriguez-Gonzalvez, P.; Gonzalez-Aguilera, D. Analysis and evaluation between the first and the second generation of RGB-D sensors. IEEE Sens. J. 2015, 15, 6507–6516. [Google Scholar] [CrossRef]
- Penne, J.; Schaller, C.; Hornegger, J.; Kuwert, T. Robust real-time 3D respiratory motion detection using time-of-flight cameras. Int. J. Comput. Assist. Radiol. Surg. 2008, 3, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Falie, D.; Ichim, M.; David, L. Respiratory motion visualization and the sleep apnea diagnosis with the time of flight (ToF) camera. In Proceedings of the 1st WSEAS International Conference on Visualization, Imaging and Simulation (VIS’08), Bucharest, Romania, 7–9 November 2008; pp. 179–184. [Google Scholar]
- Schaller, C.; Penne, J.; Hornegger, J. Time-of-flight sensor for respiratory motion gating. Med. Phys. 2008, 35, 3090–3093. [Google Scholar] [CrossRef]
- Kuan, Y.W.; Ee, N.O.; Wei, L.S. Comparative Study of Intel R200, Kinect v2, and Primesense RGB-D Sensors Performance Outdoors. IEEE Sens. J. 2019, 19, 8741–8750. [Google Scholar] [CrossRef]
- Zou, R.; Ge, X.; Wang, G. Applications of RGB-D data for 3D reconstruction in the indoor environment. In Proceedings of the 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 12–14 August 2016; pp. 375–378. [Google Scholar]
- Yao, H.; Ge, C.; Xue, J.; Zheng, N. A high spatial resolution depth sensing method based on binocular structured light. Sensors 2017, 17, 805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, B.; Li, L.; Wang, G.S.; Lin, J. Towards detection of bus driver fatigue based on robust visual analysis of eye state. IEEE Trans. Intell. Transp. Syst. 2016, 18, 545–557. [Google Scholar] [CrossRef]
- Chui, K.T.; Tsang, K.F.; Chi, H.R.; Ling, B.W.K.; Wu, C.K. An accurate ECG-based transportation safety drowsiness detection scheme. IEEE Trans. Ind. Inform. 2016, 12, 1438–1452. [Google Scholar] [CrossRef]
- Wei, C.-S.; Wang, Y.-T.; Lin, C.-T.; Jung, T.-P. Toward drowsiness detection using non-hair-bearing EEG-based brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, N.R.; Chimeno, M.F.; Castro, J.J.R.; Gonzalez, M.A.G.; Masip, E.M.; Matinez, D.B. Method and System for Determining an Individual’s State of Attention. U.S. Patent No. 8,734,359, 27 May 2014. [Google Scholar]
- Ricciardelli, R.; Idzikowski, M.; Pratt, K. Lives saved: Correctional officers’ experiences in the prevention of prisoner death by suicide. Incarceration 2020, 1. [Google Scholar] [CrossRef]
- Bouachir, W.; Gouiaa, R.; Li, B.; Noumeir, R. Intelligent video surveillance for real-time detection of suicide attempts. Pattern Recognit. Lett. 2018, 110, 1–7. [Google Scholar] [CrossRef]
- Barland, G.H.; Raskin, D.C. Psychopathy and detection of deception in criminal suspects. Psychophysiology 1975, 12, 224. [Google Scholar]
- Aliaga, D.G.; Xu, Y. A Self-Calibrating Method for Photogeometric Acquisition of 3D Objects. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 747–754. [Google Scholar] [CrossRef]
- Spinczyk, D.; Karwan, A.; Rudnicki, J.; Wróblewski, T. Stereoscopic liver surface reconstruction. Wideochirurgia Inne Tech. Maloinwazyjne = Videosurgery Other Miniinvasive Tech. 2012, 7, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Cala, S.J.; Kenyon, C.M.; Ferrigno, G.; Carnevali, P.; Aliverti, A.; Pedotti, A.; Macklem, P.T.; Rochester, D.F. Chest wall and lung volume estimation by optical reflectance motion analysis. J. Appl. Physiol. 1996, 81, 2680–2689. [Google Scholar] [CrossRef] [PubMed]
- Khoshelham, K. Accuracy analysis of kinect depth data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII-5/W12, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Pagliari, D.; Pinto, L. Calibration of Kinect for Xbox One and Comparison between the Two Generations of Microsoft Sensors. Sensors 2015, 15, 27569–27589. [Google Scholar] [CrossRef] [Green Version]
- Heerink, W.J.; Dorrius, M.D.; Groen, H.J.M.; Van Ooijen, P.M.A.; Vliegenthart, R.; Oudkerk, M. Respiratory level tracking with visual biofeedback for consistent breath-hold level with potential application in image-guided interventions. Eur. Radiol. Exp. 2018, 2, 22. [Google Scholar] [CrossRef]
- Wang, H.-K.; Lu, T.-W.; Liing, R.-J.; Shih, T.T.-F.; Chen, S.-C.; Lin, K.-H. Relationship Between Chest Wall Motion and Diaphragmatic Excursion in Healthy Adults in Supine Position. J. Formos. Med. Assoc. 2009, 108, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Martin, J. Programming Real-Time Computer Systems; Prentice Hall: Upper Saddle River, NJ, USA, 1965. [Google Scholar]
- Pépin, A.; Daouk, J.; Bailly, P.; Hapdey, S.; Meyer, M.-E. Management of respiratory motion in PET/computed tomography: The state of the art. Nucl. Med. Commun. 2014, 35, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison, A.; et al. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, 16–19 October 2011; pp. 559–568. [Google Scholar]
- Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; pp. 127–136. [Google Scholar]
- Zollhöfer, M.; Stotko, P.; Görlitz, A.; Theobalt, C.; Nießner, M.; Klein, R.; Kolb, A. State of the Art on 3D Reconstruction with RGB-D Cameras. Comput. Graph. Forum 2018, 37, 625–652. [Google Scholar] [CrossRef]
- Riedel, T. Les poumons des enfants: Caractéristiques anatomiques et physiologiques. AnäSthesie J. 2016, 1, 22–25. [Google Scholar]
- Poets, C.F.; Rau, G.A.; Neuber, K.; Gappa, M.; Seidenberg, J. Determinants of lung volume in spontaneously breathing preterm infants. Am. J. Respir. Crit. Care Med. 1997, 155, 649–653. [Google Scholar] [CrossRef]
- Pearsall, M.F.; Feldman, J.M. When Does Apparatus Dead Space Matter for the Pediatric Patient? Anesth. Analg. 2014, 118, 1404–1408. [Google Scholar] [CrossRef]
- Pereira, M.C.; Porras, D.C.; Lunardi, A.C.; da Silva, C.C.B.M.; Barbosa, R.C.C.; Cardenas, L.Z.; Pletsch, R.; Ferreira, J.G.; de Castro, I.; de Carvalho, C.R.F.; et al. Thoracoabdominal asynchrony: Two methods in healthy, COPD, and interstitial lung disease patients. PLoS ONE 2017, 12, e0182417. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, E.; Mognoni, P. Deformation of the chest wall during breathing efforts. J. Appl. Physiol. 1966, 21, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Hammer, J.; Newth, C.J.L. Assessment of thoraco-abdominal asynchrony. Paediatr. Respir. Rev. 2009, 10, 75–80. [Google Scholar] [CrossRef]
- Chen, X.; Shang, Y.; Yao, S.; Liu, R.; Liu, H. Perioperative care provider’s considerations in managing patients with the COVID-19 infections. Transl. Perioper Pain Med. 2020, 7, 216–224. [Google Scholar]
- World Health Organization. Considerations for Quarantine of Individuals in the Context of Containment for Coronavirus Disease (COVID-19): Interim Guidance, 19 March 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Shirai, Y.; Kishino, Y.; Suyama, T.; Mizutani, S. PASNIC: A thermal based privacy-aware sensor node for image capturing. In Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing, London, UK, 11–13 September 2019; pp. 202–205. [Google Scholar]
- Cardan, R. Consumer-Grade Cameras and Other Approaches to Surface Imaging. Surf. Guid. Radiat. Ther. 2020, 449. [Google Scholar]
- Lin, J.-W.; Lu, M.-H.; Lin, Y.-H. A Thermal Camera Based Continuous Body Temperature Measurement System. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019. [Google Scholar]
- Ravichandran, V.; Murugesan, B.; Balakarthikeyan, V.; Ram, K.; Preejith, S.P.; Joseph, J.; Sivaprakasam, M. RespNet: A deep learning model for extraction of respiration from photoplethysmogram. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Messe, Berlin, Germany, 23–27 July 2019; pp. 5556–5559. [Google Scholar]
- Bharati, S.; Podder, P. Disease Detection from Lung X-ray Images based on Hybrid Deep Learning. arXiv 2020, arXiv:2003.00682. [Google Scholar]
- Ma, Y.; Xu, X.; Yu, Q.; Zhang, Y.; Li, Y.; Zhao, J.; Wang, G. LungBRN: A Smart Digital Stethoscope for Detecting Respiratory Disease Using bi-ResNet Deep Learning Algorithm. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019; pp. 1–4. [Google Scholar]
- Kang, C.-H.; Erdenebayar, U.; Park, J.-U.; Lee, K.-J. Multi-Class Classification of Sleep Apnea/Hypopnea Events Based on Long Short-Term Memory Using a Photoplethysmography Signal. J. Med. Syst. 2020, 44, 14. [Google Scholar] [CrossRef]
- Shickel, B.; Loftus, T.J.; Adhikari, L.; Ozrazgat-Baslanti, T.; Bihorac, A.; Rashidi, P. DeepSOFA: A continuous acuity score for critically ill patients using clinically interpretable deep learning. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kwasniewska, A.; Ruminski, J.; Szankin, M. Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks. Appl. Sci. 2019, 9, 4405. [Google Scholar] [CrossRef] [Green Version]
- Halmetschlager-Funek, G.; Suchi, M.; Kampel, M.; Vincze, M. An empirical evaluation of ten depth cameras: Bias, precision, lateral noise, different lighting conditions and materials, and multiple sensor setups in indoor environments. IEEE Robot. Autom. Mag. 2018, 26, 67–77. [Google Scholar] [CrossRef]
- Cretikos, M.A.; Bellomo, R.; Hillman, K.; Chen, J.; Finfer, S.; Flabouris, A. Respiratory rate: The neglected vital sign. Med. J. Aust. 2008, 188, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Hermansen, C.L.; Lorah, K.N. Respiratory distress in the newborn. Am. Fam. Phys. 2007, 76, 987–994. [Google Scholar]
- Dojat, M.; Brochard, L.; Lemaire, F.; Harf, A. A knowledge-based system for assisted ventilation of patients in intensive care units. Int. J. Clin. Monit. Comput. 1992, 9, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.C. Studies of Respiratory Insufficiency in Newborn Infants: III. Respiratory Rates and Birth Weights of Premature Infants as Guides to Their Survival and Need for Oxygen Therapy. Pediatrics 1957, 20, 817–826. [Google Scholar]
- Warren, J.B.; Anderson, J.M. Newborn Respiratory Disorders. Pediatr. Rev. 2010, 31, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Boiten, F.A.; Frijda, N.H.; Wientjes, C.J.E. Emotions and respiratory patterns: Review and critical analysis. Int. J. Psychophysiol. 1994, 17, 103–128. [Google Scholar] [CrossRef]
- Nakajima, K.; Tamura, T.; Miike, H. Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique. Med. Eng. Phys. 1996, 18, 365–372. [Google Scholar] [CrossRef]
- Bernstein, L.; Shepard, R.H. High resolution display for variables in volume-displacement body plethysmography. J. Appl. Physiol. 1966, 21, 721–724. [Google Scholar] [CrossRef]
- Wood, D.W.; Downes, J.J.; Leeks, H.I. A clinical scoring system for the diagnosis of respiratory failure: Preliminary report on childhood status asthmaticus. Am. J. Dis. Child. 1972, 123, 227–228. [Google Scholar] [CrossRef]
- Thaweerujirot, C.; Daengsuwan, T. Comparison between pediatric respiratory assessment measure (PRAM) score and Wood’s asthma score to assess acute asthma exacerbation. Asian Pac. J. Allergy Immunol. 2019, 37, 123–129. [Google Scholar] [PubMed]
- Chalut, D.S.; Ducharme, F.M.; Davis, G.M. The Preschool Respiratory Assessment Measure (PRAM): A responsive index of acute asthma severity. J. Pediatr. 2000, 137, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Black, A.M.S.; Millard, R.K. Assessing thoracoabdominal asynchrony. Clin. Physiol. 2001, 21, 383–385. [Google Scholar] [CrossRef] [PubMed]
- De Groote, A.; Verbandt, Y.; Paiva, M.; Mathys, P. Measurement of thoracoabdominal asynchrony: Importance of sensor sensitivity to cross section deformations. J. Appl. Physiol. 2000, 88, 1295–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strömberg, N.O.T.; Nelson, N. Thoracoabdominal asynchrony in small children with lung disease—Methodological aspects and the relationship to lung mechanics. Clin. Physiol. 1998, 18, 447–456. [Google Scholar] [CrossRef]
- Prisk, G.K.; Hammer, J.; Newth, C.J.L. Techniques for measurement of thoracoabdominal asynchrony. Pediatr. Pulmonol. 2002, 34, 462–472. [Google Scholar] [CrossRef]
- Shin, S.-O.; Kim, N.-S. Accessory respiratory muscle activation during chest expansion exercise using elastic bands in children with cerebral palsy. Korean Soc. Phys. Med. 2016, 11, 119–124. [Google Scholar] [CrossRef]
- Lopes, E.A.; Fanelli-Galvani, A.; Prisco, C.C.V.; Gonçalves, R.C.; Jacob, C.M.A.; Cabral, A.L.B.; Martins, M.A.; Carvalho, C.R.F. Assessment of muscle shortening and static posture in children with persistent asthma. Eur. J. Pediatr. 2007, 166, 715–721. [Google Scholar] [CrossRef]
- Nadeau, C.; Krupa, A.; Gangloff, J. Automatic Tracking of an Organ Section with an Ultrasound Probe: Compensation of Respiratory Motion. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2011; pp. 57–64. [Google Scholar]
- Oikonomidis, I.; Kyriazis, N.; Argyros, A. Efficient model-based 3D tracking of hand articulations using Kinect. In Proceedings of the British Machine Vision Conference, Dundee, UK, 29 August–2 September 2011; pp. 101.1–101.11. [Google Scholar] [CrossRef]
- Schwarz, L.A.; Mkhitaryan, A.; Mateus, D.; Navab, N. Human skeleton tracking from depth data using geodesic distances and optical flow. Image Vis. Comput. 2012, 30, 217–226. [Google Scholar] [CrossRef] [Green Version]
- González-Ortega, D.; Díaz-Pernas, F.J.; Martínez-Zarzuela, M.; Antón-Rodríguez, M. A Kinect-based system for cognitive rehabilitation exercises monitoring. Comput. Methods Programs Biomed. 2014, 113, 620–631. [Google Scholar] [CrossRef]
- Gomes, R.B.; da Silva, B.M.F.; de Medeiros Rocha, L.K.; Aroca, R.V.; Velho, L.C.P.R.; Gonçalves, L.M.G. Efficient 3D object recognition using foveated point clouds. Comput. Graph. 2013, 37, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Lun, R.; Zhao, W. A survey of applications and human motion recognition with microsoft kinect. Int. J. Pattern Recognit. Artif. Intell. 2015, 29, 1555008. [Google Scholar] [CrossRef] [Green Version]
- Bouachir, W.; Noumeir, R. Automated video surveillance for preventing suicide attempts. In Proceedings of the 7th International Conference on Imaging for Crime Detection and Prevention (ICDP 2016), Madrid, Spain, 23–25 November 2016. [Google Scholar]
Year | Author Name, Reference | Respiratory Element | Method/Device (D), Validation Method (V), Validation Dataset or Subjects (S) | Results with Respect to Each Study’s Objective |
---|---|---|---|---|
2020 | Lee et al. [44] | Respiratory rate | D: radar sensor. V: respiration belt with peak counting. S: 16 adults | ρ 1 = 0.99 (without movements) ρ 1 = 0.92 (with weak movements) ρ 1 = 0.84 (with severe movements) |
Phokela et al. [45] | Respiratory rate | D: smartphone and headset microphone. V: manual record of inhale and exhale points by users when breathing using an Android application on their smartphone. Users press on a button after each inhalation and exhalation. S: 25 healthy subjects ranging from 10 to 50 years old (11 males and 14 females). | Error = 1% to 9.4% using one source of noise such as television or air conditioner. Error = 1% to 8% in noisy environments (with the combination of various noise sources). | |
Rehouma et al. [46] | Respiratory rate Tidal volume Minute ventilation | D: dual-Kinect V2 (3D reconstruction). V: mechanical ventilator. S: a mannequin and 2 infants (1 Male and 1 female). | r2 2 = 0.99 in mannequin r2 2 > 0.94 in real patients | |
2019 | Reyes et al. [47] | Respiratory rate Respiration movement | D: RGB camera. V: using a reference database comprising 12 video files. S: 4 subjects. | CorrI 3 > 90% NRMSE 4~10% |
Saegusa et al. [48] | Breathing pattern | D: Orbbec Astra (depth information) + FLIR (Forward Looking InfraRed) sensor C2 (thermal information for person detection). V: Controlled breathing by listening to a metronome set at a frequency of 0.27 Hz over 30 s and by stopping breathing for 20 s for two times. S: 1 subject. | accuracy ~90% | |
2019 | Mateu-Mateus et al. [49] | Respiratory signal | D: Microsoft Kinect V2 (infrared and depth frames). V: Thorax plethysmography system for reference system. S: 20 subjects. | Agreement between the proposed method’s signal and reference method signal: Mean deviation = 10.13 ms No BA 5 bias in the BA 1 graph p 6 < 0.05 global SEN 7 = 77.21 % global PPV 8 = 80.69 % |
2019 | Massaroni et al. [10] | Respiratory pattern | D: built-in CCD RGB webcam (iSight camera) integrated into a commercial MacBook Pro laptop (by Apple Inc., Cupertino, California, USA). V: reference respiratory pattern from a head-mounted wearable device recording of the pressure-drop () that occurs during the expiratory/inspiratory phases of respiration at the level of nostrils. S: 12 subjects (6 males and 6 females). | Better performance on females: BA 5 bias = −0.01 ± 1.02 bpm Females BA 5 bias = −0.01 ± 0.73 bpm Males BA 5 bias = 0.01 ± 1.22 bpm |
2018 | Pereira et al. [50] | Respiratory rate | D: infrared thermography. V: long wavelength infrared (LWIR) camera (Vario CAMR HD head 820S/30 mm (InfraTec GmbH, Dresden, Germany)). S: 12 healthy volunteers + 8 newborns. |
|
Yang et al. [51] | Respiratory rate | D: impulse ultra-wide band (UWB) radar installed in a vehicle. V: a USB pressing button to obtain the ground truth of breathing counts. The button is pressed while a subject is inhaling. S: 4 subjects. | ERROR = 1.06 BPM | |
Shoun et al. [52] | Tidal volume | D: thermal data processing. The correlation with the ground-truth measurement is performed using Long-Short-Term-Memory (LSTM) neural network (used as a predictive model for tidal volume estimates). V: spirometry. S: five healthy normal human subjects. | RMSE 10 = 10.61%. | |
2017 | Jorge et al. [53] | Breathing pattern (detection of abnormal signals) | D: 3 CCD 11 (Sony ICX274AL®, Sony, Tokyo, Japan) digital camera (JAI AT-200C®, JAI, Glostrup, Denmark). V: a total of 107 events were divided into two independent groups for training and validation and our algorithm was trained to classify true cessations. S: 30 neonatal admissions of less than 37 weeks. | FAR 12 reduced of 77.3% |
Liu et al. [54] | Respiration movement | D: wearable strain sensor (WSS). V: measuring tape (MT). S: 21 healthy male students. | ICC 13 values for intra-rater reliability were from 0.94 to 0.98 at all locations | |
Martinez et al. [55] | Breathing rate | D: depth camera (PS1080, 640x480@30Hz). V: dataset of 3239 segments collected from 67 sleep laboratory patients. S: 67 patients referred to a sleep laboratory with various degrees of sleep apnea. | accuracy = 85.9% |
Author, Year, Reference | Methods and Results |
---|---|
Kim et al., 2020 [95] |
|
Islam et al., 2020 [97] |
|
Lee et al., 2020 [44] |
|
Carreiro et al., 2020 [82] |
|
Yaakov et al., 2020 [96] |
|
Nosrati et al., 2019 [94] |
|
Yang et al., 2018 [51] |
|
Structured-Light (SL) | Time-of-Flight (ToF) | Active Stereo Vision (ASV) | ||||||
---|---|---|---|---|---|---|---|---|
Parameter/Sensor | Microsoft Kinect v1 | ASUS Xtion | Orbbec Astra S | Microsoft Kinect v2 | Kinect Azure DK 3 | Intel R200 | Intel D415 | Intel D435 |
Frame Rate
(FPS 1) | 30 | 30 | 30 | 30 | 5–15–30 | 90 | 90 | 90 |
Color Resolution (px 2) | 640 × 480 | SXVGA 4 (1280 × 1024) | 1280 × 960 @ 7 FPS 640 × 480 @ 30 FPS 320 × 240 @ 30 FPS | 1920 × 1080 | Up to 3840 × 2160 | 1920 × 1080 | 1920 × 1080 | 1920 × 1080 |
Depth Resolution (px 2) | 640 × 480 | VGA 5 (640 × 480) QVGA 6 (320 × 240) | VGA 5 (640 × 480) QVGA 6 (320 × 240) QQVGA 7 (160 × 120) | 512 × 424 | NFOV 8 unbinned 640 × 576 NFOV 8 2 × 2 binned (SW 9) 320 × 288 WFOV 10 2 × 2 binned 512 × 512 WFOV 10 unbinned 1024 ×1024 Passive IR 11 1024 × 1024 | 640 × 480 | 1280 × 720 | 1280 × 720 |
Field of view | 57° × 43° | 57° × 43° | 60° × 49.5° | 70° × 60° | Up to 90° × 59° | 59° × 46° | 63.4° × 40.4° | 85.2° × 58° |
Range (meter) | 0.8–4.0 | 0.8–4.0 | 0.4–2.0 | 0.5–4.5 | 0.25–5.46 | 0.5–6.0 | 0.16–10 | 0.2–4.5 |
Year | Author Name, Reference | Respiratory Element | Method/Device (D), Validation Method (V), Validation Dataset or Subjects (S) | Results with Respect to Each Study’s Objective | Environment/ Applications |
---|---|---|---|---|---|
2020 | Chen et al. [99] | Respiration rate | D: Doppler and passive radio sensing. V: video recordings. S: 1 subject with four testing positions. |
| Home Environments
|
Schätz et al. [111] | Respiratory pattern | D: depth data processing from a variety of depth sensors (MS Kinect v2, RealSense SR300, R200, D415, and D435). V: a neural network classifier (simple competitive NN) was trained on a set of whole night polysomnographic records with a classification of sleep apneas by a sleep specialist. S: 57 patients (32 healthy and 25 patients having sleep apnea). |
| ||
2019 | Delimayanti et al. [157] | Respiratory pattern and breathing activities | D: depth data processing from Kinect v2, using FFT 1 & PCA 2. Then, a classification is performed using SVM 3 classifier. V: cross-validation using complementary subsets (learning + testing). S: 4 subjects with 10-fold cross validation. |
| Clinical Environments
|
2018 | Rehouma et al. [91] | Respiratory rate Tidal volume | D: dual-Kinect sensor (surface reconstruction). V: mechanical ventilator. S: mannequin + 1 patient. | Respiratory rate:
| Intensive Care Unit
|
2017 | Aoki et al. [103] | Minute ventilation (VE) | D: extraction of motion waveform using a Kinect v2 sensor under a high exercise intensity of ≥100 W. V: expiration gas analyzer. S: 6 subjects. |
| Sport
|
Schoun et al. [52] | Tidal volume | D: measures are obtained from thermal images, correlated with ground-truth measures, and then trained into a recurrent network model using TensorFlow library. V: spirometry. S: 5 subjects. |
| Clinical/Home Environments
| |
Sharp et al. [122] | Respiratory function testing | D: 3D reconstruction of the subject’s thorax using depth data of a Kinect v2. V: spirometer, S: 251 recorded efforts. |
| Clinical Environments
| |
Soleimani et al. [6] | Forced vital capacity measures | D: chest wall surface reconstruction using depth data of a ToF 13 sensor. V: spirometer. S: 85 patients. | r2 14 = 0.98 | Clinical Environments
| |
2016 | Ripoll et al. [98] | Respiratory rate | D: chest wall surface reconstruction using depth data of a ToF 13 sensor. V: data recorded by a plethysmography band. S: 5 subjects. | α 15 = 0.99 | Vehicle (driving)
|
2016 | Reyes et al. [100] | Respiratory rate Tidal volume | D: estimation of a volumetric surrogate signal on a smartphone. Authors analyze the intensity changes in the video channels caused by the chest wall movements during breathing. V: spirometry. S: 15 subjects. |
| Transport/Home
|
Reinaux et al. [123] | Tidal volume | D: optoelectronic plethysmography (OEP). V: comparison with pneumotachograph data. S: 20 infants. |
| Clinical/Home environments in infants.
| |
Procházka et al. [93] | Respiratory rate | D: video sequences of thorax movements are recorded by MS Kinect sensor to enable their time analysis in selected regions of interest. V: contact-based sensor (Garmin Ltd.). S: record of 120 s of image, depth, and infrared video frames. |
| Home environment
| |
2016 | Sirevaag et al. [101] | Respiratory rate, Respiratory pattern | D: laser Doppler vibrometry (LDV). V: data from Biopac SS5B circumferential belt, at a lower thoracic level. S: 32 healthy participants. |
| Harsh environments (e.g., including the MR scanner where the laser head can be separated from the magnetic field). Clinical environments. |
Ostadabbas et al., [92] | Airway Resistance Tidal volume | D: depth data processing of a segmented ROI, called chest bounding box. The segmentation is performed to optimally demonstrate the lung volume changes during respiration. V: clinical results using spirometry and plethysmography tests. S: 14 patients. |
| Clinical/Home environment
| |
2015 | Heß et al. [148] | Abdominal and thoracic patterns | D: 3D reconstruction based on two Structured light cameras data. V: moving a high-precision platform with 10-micrometer accuracy. S: 10 patients. |
| Clinical environment
|
2014 | Tahavori et al. [141] | Respiratory motion | D: multi-ROI analysis, to investigate the dominate variations using PCA, based on depth data from a structured light sensor. V: multi-ROI analysis performed on 3 separate sessions. S: 20 subjects. | The first principal component describes more than 70% of the motion data variance in thoracic and abdominal surfaces. | Clinical environment
|
2014 | Benetazzo et al. [75] | Respiratory rate | D: a system based on structured light sensor detects the human chest and calculates its distance from the camera to predict the respiratory rate. V: spirometry. S: 5 subjects. |
| Sitting person in an indoor environment such as clinical environment, home environment. |
2010 | De Boer et al. [119] | PFT 19 changes (FEV 10, FVC 9) | D: structured light plethysmography (SLP) based on structured light cameras. V: spirometer and pneumotachograph data. S: 40 patients. |
| Anesthesia and intensive care environments. |
Home Applications | Clinical Environment | Sporting Environment | Vehicles | Intensive Care Environments | Prisons | Universal | |
---|---|---|---|---|---|---|---|
Low-cost | ✓✓ | ✗ | ✓✓ | ✓ | ✗ | ✗ | ✓ |
Continuous monitoring | ✗ | ✓ | ✗ | ✓ | ✓✓ | ✓✓ | ✗ |
Non-contact | ✓ | ✓ | ✓ | ✓ | ✓✓ | ✓✓ | ✓✓ |
Integration in environment | ✓ | ✓ | ✓ | ✓✓ | ✓✓ | ✓✓ | ✓✓ |
Real-time | ✗ | ✓ | ✗ | ✓✓ | ✓✓ | ✓✓ | ✓✓ |
High accuracy | ✗ | ✓✓ | ✗ | ✓ | ✓✓ | ✓✓ | ✓✓ |
Many respiration parameters | ✗ | ✓✓ | ✗ | ✗ | ✓✓ | ✗ | ✓ |
Results self-interpretation 1 | ✓✓ | ✗ | ✓ | ✓✓ | ✗ | ✓✓ | ✓ |
Low complexity | ✓✓ | ✓✓ | ✓✓ | ✓✓ | ✓✓ | ✓✓ | ✓✓ |
Low space occupation | ✓ | ✓ | ✓ | ✓✓ | ✓✓ | ✓✓ | ✓ |
Embedded processing 2 | ✗ | ✗ | ✓✓ | ✓✓ | ✓ | ✓✓ | ✓✓ |
Mobility | ✗ | ✗ | ✓ | ✗ | ✓✓ | ✗ | ✓✓ |
Demanding high user experience 3 | ✓✓ | ✓✓ | ✓✓ | ✓✓ | ✓✓ | ✓✓ | ✓✓ |
Network availability (Wi-Fi) | ✗ | ✗ | ✗ | ✗ | ✓✓ | ✓✓ | ✓✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehouma, H.; Noumeir, R.; Essouri, S.; Jouvet, P. Advancements in Methods and Camera-Based Sensors for the Quantification of Respiration. Sensors 2020, 20, 7252. https://doi.org/10.3390/s20247252
Rehouma H, Noumeir R, Essouri S, Jouvet P. Advancements in Methods and Camera-Based Sensors for the Quantification of Respiration. Sensors. 2020; 20(24):7252. https://doi.org/10.3390/s20247252
Chicago/Turabian StyleRehouma, Haythem, Rita Noumeir, Sandrine Essouri, and Philippe Jouvet. 2020. "Advancements in Methods and Camera-Based Sensors for the Quantification of Respiration" Sensors 20, no. 24: 7252. https://doi.org/10.3390/s20247252
APA StyleRehouma, H., Noumeir, R., Essouri, S., & Jouvet, P. (2020). Advancements in Methods and Camera-Based Sensors for the Quantification of Respiration. Sensors, 20(24), 7252. https://doi.org/10.3390/s20247252