Enhanced Infrared Sparse Pattern Extraction and Usage for Impact Evaluation of Basalt-Carbon Hybrid Composites by Pulsed Thermography
<p>Photographs and schematic structures of the specimens.</p> "> Figure 2
<p>CT slices of the specimens.</p> "> Figure 3
<p>Optical excitation thermography inspection: (<b>a</b>) schematic configuration; (<b>b</b>) experimental setup.</p> "> Figure 4
<p>Enhanced infrared sparse pattern extraction framework for thermal sequence processing.</p> "> Figure 5
<p>Thermographic result and analysis for the intercalated structure with basalt-carbon-basalt (INTBCB) specimen: (<b>a</b>) pseudo color image of the typical frame; (<b>b</b>) temperature profile curve of the selected points.</p> "> Figure 6
<p>PCT results of the thermal sequence conducted through flash thermography on the INTBCB specimen: (<b>a</b>) EOF 1; (<b>b</b>) EOF 2; (<b>c</b>) EOF 3; (<b>d</b>) EOF 4; (<b>e</b>) EOF 5; (<b>f</b>) EOF 6.</p> "> Figure 7
<p>Comparison on the enhanced sparse pattern extraction results of the INTBCB specimen: (<b>a</b>) PCT; (<b>b</b>) IALM; (<b>c</b>) VBTF; (<b>d</b>) PRMF; (<b>e</b>) MoG; (<b>f</b>) IRTPCA.</p> "> Figure 8
<p>Intensity distribution curve on the INTBCB specimen acquired by different processing methods.</p> "> Figure 9
<p>Comparison on three high-performance algorithms.</p> "> Figure 10
<p>Comparison of the different preprocessing implementation details using the INTBCB specimen: (<b>a</b>) Cropping and first 10 frames extraction in the cooling stage; (<b>b</b>) Cropping and 10 principal components extraction; (<b>c</b>) Without cropping and 10 principal components extraction.</p> "> Figure 11
<p>Comparison of the ensemble structure implementation using the INTBCB specimen: (<b>a</b>) Performance comparison on PRMF and ensemble PRMF; (<b>b</b>) Intensity distribution curve.</p> "> Figure 12
<p>Validation using ultrasonic testing.</p> "> Figure 13
<p>Validation using vibrothermography on four composite laminates: (<b>a</b>) Schematic configuration of vibrothermography; (<b>b</b>) Data processing results of PCT, enhanced sparse pattern extraction using VBTF and enhanced sparse pattern extraction using MoG; (<b>c</b>) The second sparse pattern extracted with MoG from the INTBCB and INTCBC specimens.</p> "> Figure 13 Cont.
<p>Validation using vibrothermography on four composite laminates: (<b>a</b>) Schematic configuration of vibrothermography; (<b>b</b>) Data processing results of PCT, enhanced sparse pattern extraction using VBTF and enhanced sparse pattern extraction using MoG; (<b>c</b>) The second sparse pattern extracted with MoG from the INTBCB and INTCBC specimens.</p> ">
Abstract
:1. Introduction
2. Specimens
3. Methodology
3.1. Experimental Setup
3.2. Sparse Pattern Extraction
3.3. Ensemble Sparse Pattern Extraction
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gholizadeh, S. A review of non-destructive testing methods of composite materials. Procedia Struct. Integr. 2016, 1, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Papa, I.; Ricciardi, M.R.; Antonucci, V.; Langella, A.; Tirillò, J.; Sarasini, F.; Pagliarulo, V.; Ferraro, P.; Lopresto, V. Comparison between different non-destructive techniques methods to detect and characterize impact damage on composite laminates. J. Compos. Mater. 2020, 54, 617–631. [Google Scholar] [CrossRef]
- Zhang, H.; Sfarra, S.; Osman, A.; Szielasko, K.; Stumm, C.; Genest, M.; Maldague, X.P.V. An infrared-induced terahertz imaging modality for foreign object detection in a lightweight honeycomb composite structure. IEEE Trans. Ind. Inform. 2018, 14, 5629–5636. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; He, Y. Optically and non-optically excited thermography for composites: A review. Infrared Phys. Technol. 2016, 75, 26–50. [Google Scholar] [CrossRef]
- Schroeder, J.A.; Ahmed, T.; Chaudhry, B.; Shepard, S. Non-destructive testing of structural composites and adhesively bonded composite joints: Pulsed thermography. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1511–1517. [Google Scholar] [CrossRef]
- Zhang, H.; Robitaille, F.; Grosse, C.U.; Ibarra-Castanedo, C.; Martins, J.O.; Sfarra, S.; Maldague, X.P.V. Optical excitation thermography for twill/plain weaves and stitched fabric dry carbon fibre preform inspection. Compos. Part A Appl. Sci. Manuf. 2018, 107, 282–293. [Google Scholar] [CrossRef] [Green Version]
- Keo, S.-A.; Defer, D.; Breaban, F.; Brachelet, F. Comparison between microwave infrared thermography and CO2 laser infrared thermography in defect detection in applications with CFRP. Mater. Sci. Appl. 2013, 4, 600–605. [Google Scholar]
- Zhang, H.; Yu, L.; Hassler, U.; Fernandes, H.; Genest, M.; Robitaille, F.; Joncas, S.; Holub, W.; Sheng, Y.; Maldague, X. An experimental and analytical study of micro-laser line thermography on micro-sized flaws in stitched carbon fiber reinforced polymer composites. Compos. Sci. Technol. 2016, 126, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Rantala, J.; Wu, D.; Busse, G. Amplitude-modulated lock-in vibrothermography for NDE of polymers and composites. Res. Nondestruct. Eval. 1996, 7, 215–228. [Google Scholar] [CrossRef]
- Favro, L.D.; Han, X.; Ouyang, Z.; Sun, G.; Sui, H.; Thomas, R.L. Infrared imaging of defects heated by a sonic pulse. Rev. Sci. Instrum. 2000, 71, 2418–2421. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Chen, S.; Zhou, D.; Huang, S.; Wang, P. Shared excitation based nonlinear ultrasound and vibrothermography testing for CFRP barely visible impact damage inspection. IEEE Trans. Ind. Inform. 2018, 14, 5575–5584. [Google Scholar] [CrossRef]
- Cheng, L.; Tian, G.Y. Transient thermal behavior of eddy-current pulsed thermography for nondestructive evaluation of composites. IEEE Trans. Instrum. Meas. 2013, 62, 1215–1222. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Jiang, X.; Lodewijks, G. Method for detecting damage in carbon-fibre reinforced plastic-steel structures based on eddy current pulsed thermography. Nondestruct. Test. Eval. 2018, 33, 1–19. [Google Scholar] [CrossRef]
- Shepard, S.M. Advances in pulsed thermography. In Proceedings of the Thermosense XXIII, Orlando, FL, USA, 16–19 April 2001; Volume 4360, pp. 511–515. [Google Scholar]
- Shepard, S.M.; Lhota, J.R.; Rubadeux, B.A.; Wang, D.; Ahmed, T. Reconstruction and enhancement of active thermographic image sequences. Opt. Eng. 2003, 42, 1337–1343. [Google Scholar] [CrossRef]
- Rajic, N. Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 2002, 58, 521–528. [Google Scholar] [CrossRef]
- Maldague, X.; Galmiche, F.; Ziadi, A. Advances in pulsed phase thermography. Infrared Phys. Technol. 2002, 43, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Burgholzer, P.; Thor, M.; Gruber, J.; Mayr, G. Three-dimensional thermographic imaging using a virtual wave concept. J. Appl. Phys. 2017, 121, 105102. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, S.; Burgholzer, P.; Mayr, G.; Jung, P.; Caire, G.; Ziegler, M. Photothermal super resolution imaging: A comparison of different thermographic reconstruction techniques. NDT E Int. 2020, 111, 102228. [Google Scholar] [CrossRef]
- Kovács, P.; Lehner, B.; Thummerer, G.; Mayr, G.; Burgholzer, P.; Huemer, M. Deep learning approaches for thermographic imaging. J. Appl. Phys. 2020, 128, 155103. [Google Scholar] [CrossRef]
- Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6–11 December 2009; pp. 2080–2088. [Google Scholar]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, 1–37. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, C.; Yu, W. Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 597–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Balzano, L.; Szlam, A. Incremental gradient on the grassmannian for online foreground and background separation in subsampled video. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1568–1575. [Google Scholar]
- Yong, H.; Meng, D.; Zuo, W.; Zhang, L. Robust online matrix factorization for dynamic background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1726–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image denoising. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869. [Google Scholar]
- Yan, Z.; Chen, C.-Y.; Luo, L.; Yao, Y. Stable principal component pursuit-based thermographic data analysis for defect detection in polymer composites. J. Process Control 2017, 49, 36–44. [Google Scholar] [CrossRef]
- Ahmed, J.; Gao, B.; Tian, G.Y.; Yang, Y.; Fan, Y.C. Sparse ensemble matrix factorization for debond detection in CFRP composites using optical thermography. Infrared Phys. Technol. 2018, 92, 392–401. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Sfarra, S.; Yao, Y. Sparse principal component thermography for subsurface defect detection in composite products. IEEE Trans. Ind. Inform. 2018, 14, 5594–5600. [Google Scholar] [CrossRef]
- Jie, J.; Dai, S.; Hou, B.; Zhang, M.; Zhou, L. Defect detection in composite products based on sparse moving window principal component thermography. Adv. Polym. Technol. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Tirillò, J.; Ferrante, L.; Sarasini, F.; Lampani, L.; Barbero, E.; Sánchez-Sáez, S.; Valente, T.; Gaudenzi, P. High velocity impact behaviour of hybrid basalt-carbon/epoxy composites. Compos. Struct. 2017, 168, 305–312. [Google Scholar] [CrossRef]
- Babacan, S.D.; Luessi, M.; Molina, R.; Katsaggelos, A.K. Sparse bayesian methods for low-rank matrix estimation. IEEE Trans. Signal Process. 2012, 60, 3964–3977. [Google Scholar] [CrossRef]
- Wang, N.; Yao, T.; Wang, J.; Yeung, D.-Y. A probabilistic approach to robust matrix factorization. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 126–139. [Google Scholar]
- Liu, Y.; Chen, L.; Zhu, C. Improved robust tensor principal component analysis via low-rank core matrix. IEEE J. Sel. Top. Signal Process. 2018, 12, 1378–1389. [Google Scholar] [CrossRef]
Structure | Stacking Sequence | Fiber Volume Fraction | Thickness [mm] | Impact Velocity [m/s] | |
---|---|---|---|---|---|
SANBCB | 201.69 | ||||
SANCBC | 251.71 | ||||
INTBCB | 248.22 | ||||
INTCBC | 253.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Zhang, H.; Sfarra, S.; Sergi, C.; Perilli, S.; Ibarra-Castanedo, C.; Tian, G.; Maldague, X. Enhanced Infrared Sparse Pattern Extraction and Usage for Impact Evaluation of Basalt-Carbon Hybrid Composites by Pulsed Thermography. Sensors 2020, 20, 7159. https://doi.org/10.3390/s20247159
Hu J, Zhang H, Sfarra S, Sergi C, Perilli S, Ibarra-Castanedo C, Tian G, Maldague X. Enhanced Infrared Sparse Pattern Extraction and Usage for Impact Evaluation of Basalt-Carbon Hybrid Composites by Pulsed Thermography. Sensors. 2020; 20(24):7159. https://doi.org/10.3390/s20247159
Chicago/Turabian StyleHu, Jue, Hai Zhang, Stefano Sfarra, Claudia Sergi, Stefano Perilli, Clemente Ibarra-Castanedo, Guiyun Tian, and Xavier Maldague. 2020. "Enhanced Infrared Sparse Pattern Extraction and Usage for Impact Evaluation of Basalt-Carbon Hybrid Composites by Pulsed Thermography" Sensors 20, no. 24: 7159. https://doi.org/10.3390/s20247159
APA StyleHu, J., Zhang, H., Sfarra, S., Sergi, C., Perilli, S., Ibarra-Castanedo, C., Tian, G., & Maldague, X. (2020). Enhanced Infrared Sparse Pattern Extraction and Usage for Impact Evaluation of Basalt-Carbon Hybrid Composites by Pulsed Thermography. Sensors, 20(24), 7159. https://doi.org/10.3390/s20247159