Estimating System State through Similarity Analysis of Signal Patterns
<p>Overall procedure of state prediction.</p> "> Figure 2
<p>Transformation of multi-sensor signals to a series of discretized state vectors [<a href="#B19-sensors-20-06839" class="html-bibr">19</a>].</p> "> Figure 3
<p>State prediction by conditional probability.</p> "> Figure 4
<p>State prediction by state prediction powers.</p> "> Figure 5
<p>State prediction power map and label rearrange for fault region visualization.</p> "> Figure 6
<p>Car engine fault simulator and data collection system: (<b>a</b>) variable voltage controllers generate artificial engine faults by changing the gauges of engine components, such as manifold air pressure (MAP), throttle position sensor (TPS), intake air temperature (IAT), water temperature sensor (WTS), and four injectors; (<b>b</b>) the data collection system consists of 40 sensors installed at engine components as well as a data acquisition module.</p> "> Figure 7
<p>Experiment procedure for 20 repeated experimental trials.</p> "> Figure 8
<p>State prediction power map for engine fault simulation data.</p> "> Figure 9
<p>Trends of sensitivity and specificity depending on limit value in fault detection.</p> ">
Abstract
:1. Introduction
2. State Prediction Method
2.1. Pattern Definition Using Discretized State Vector
2.2. Probabilistic Scoring Rule for State Prediction
3. Similarity Analysis by State Prediction Power
3.1. Engine Fault Simulator
3.2. Similarity Analysis
4. Experimental Results and Discussion
4.1. Fault Detection with the SPP
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.; Lapira, E.; Bagheri, B.; Kao, H.-A. Recent advances and trends in predictive manufacturing systems in big data environment. Manuf. Lett. 2013, 1, 38–41. [Google Scholar] [CrossRef]
- Martin, K. A review by discussion of condition monitoring and fault diagnosis in machine tools. Int. J. Mach. Tools Manuf. 1994, 34, 527–551. [Google Scholar] [CrossRef]
- Jardine, A.K.; Lin, D.; Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 2006, 20, 1483–1510. [Google Scholar] [CrossRef]
- Ekanayake, T.; Dewasurendra, D.; Abeyratne, S.; Ma, L.; Yarlagadda, P.K. Model-based fault diagnosis and prognosis of dynamic systems: A review. Procedia Manuf. 2019, 30, 435–442. [Google Scholar] [CrossRef]
- López-Estrada, F.; Rotondo, D.; Valencia-Palomo, G. A Review of Convex Approaches for Control, Observation and Safety of Linear Parameter Varying and Takagi-Sugeno Systems. Processes 2019, 7, 814. [Google Scholar] [CrossRef] [Green Version]
- Zorriassatine, F.; Al-Habaibeh, A.; Parkin, R.M.; Jackson, M.R.; Coy, J. Novelty detection for practical pattern recognition in condition monitoring of multivariate processes: A case study. Int. J. Adv. Manuf. Technol. 2005, 25, 954–963. [Google Scholar] [CrossRef]
- Salo, F.; Nassif, A.B.; Essex, A. Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection. Comput. Netw. 2019, 148, 164–175. [Google Scholar] [CrossRef]
- Wang, T.; Xu, H.; Han, J.; Elbouchikhi, E.; Benbouzid, M.E.H. Cascaded H-Bridge Multilevel Inverter System Fault Diagnosis Using a PCA and Multiclass Relevance Vector Machine Approach. IEEE Trans. Power Electron. 2015, 30, 7006–7018. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, L.; Liang, K. Fault monitoring and diagnosis of aerostat actuator based on pca and state observer. Int. J. Model. Identif. Control 2019, 32, 145–153. [Google Scholar] [CrossRef]
- Wan, J.; Tang, S.; Li, D.; Wang, S.; Liu, C.; Abbas, H.; Vasilakos, A.V. A Manufacturing Big Data Solution for Active Preventive Maintenance. IEEE Trans. Ind. Inform. 2017, 13, 2039–2047. [Google Scholar] [CrossRef]
- Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S.N.; Yin, K. A review of process fault detection and diagnosis: Part III: Process history based methods. Comput. Chem. Eng. 2003, 27, 327–346. [Google Scholar] [CrossRef]
- Jain, A.; Duin, R.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–37. [Google Scholar] [CrossRef] [Green Version]
- Sohn, H.; Farrar, C.R.; Hunter, N.F.; Worden, K. Structural Health Monitoring Using Statistical Pattern Recognition Techniques. J. Dyn. Syst. Meas. Control. 2001, 123, 706–711. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Li, H.; Pan, D. An improved piecewise aggregate approximation based on statistical features for time series mining. In International Conference on Knowledge Science, Engineering and Management; Springer: Berlin/Heidelberg, Germany, 2010; pp. 234–244. [Google Scholar]
- Lkhagva, B.; Suzuki, Y.; Kawagoe, K. Extended SAX: Extension of symbolic aggregate approximation for financial time series data representation. In Proceedings of the 17th IEICE Data Engineering Workshop, Ginowan, Okinawa, Japan, 1–3 March 2006. [Google Scholar]
- Daw, C.S.; Finney, C.E.A.; Tracy, E.R. A review of symbolic analysis of experimental data. Rev. Sci. Instrum. 2003, 74, 915–930. [Google Scholar] [CrossRef]
- Pensa, R.G.; Leschi, C.; Besson, J.; Boulicaut, J.-F. Assessment of Discretization Techniques for Relevant Pattern Discovery from Gene Expression Data. In Proceedings of the 4th International Conference on Data Mining in Bioinformatics, Seattle, WA, USA, 22 August 2004; pp. 24–30. [Google Scholar]
- Gupta, S.; Ray, A.; Keller, E. Symbolic time series analysis of ultrasonic data for early detection of fatigue damage. Mech. Syst. Signal Process. 2007, 21, 866–884. [Google Scholar] [CrossRef]
- Baek, S.; Kim, D.Y. Empirical sensitivity analysis of discretization parameters for fault pattern extraction from multivariate time series data. IEEE Trans. Cybern. 2017, 47, 1198–1209. [Google Scholar] [CrossRef] [PubMed]
- Mörchen, F.; Ultsch, A. Optimizing Time Series Discretization for Knowledge Discovery. In Proceedings of the 11th International Conference on Knowledge Discovery in Data Mining, Chicago, IL, USA, 21–24 August 2005; pp. 660–665. [Google Scholar]
- Hong, D.; Xiuwen, G.; Shuzi, Y. An approach to state recognition and knowledge-based diagnosis for engines. Mech. Syst. Signal Process. 1991, 5, 257–266. [Google Scholar] [CrossRef]
- Liu, H.; Hussain, F.; Tan, C.L.; Dash, M. Discretization: An Enabling Technique. Data Min. Knowl. Discov. 2002, 6, 393–423. [Google Scholar] [CrossRef]
- Tang, J.; Alelyani, S.; Liu, H. Data Classification: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2014; pp. 37–64. [Google Scholar]
- Muralidharan, V.; Sugumaran, V. A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis. Appl. Soft Comput. 2012, 12, 2023–2029. [Google Scholar] [CrossRef]
- Palácios, R.H.C.; Da Silva, I.N.; Goedtel, A.; Godoy, W.F. A comprehensive evaluation of intelligent classifiers for fault identification in three-phase induction motors. Electr. Power Syst. Res. 2015, 127, 249–258. [Google Scholar] [CrossRef]
- Collell, G.; Prelec, D.; Patil, K.R. A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data. Neurocomputing 2018, 275, 330–340. [Google Scholar] [CrossRef]
- Yates, J.F. External correspondence: Decompositions of the mean probability score. Organ. Behav. Hum. Perform. 1982, 30, 132–156. [Google Scholar] [CrossRef] [Green Version]
- Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Roulston, M.S. Performance targets and the Brier score. Meteorol. Appl. 2007, 14, 185–194. [Google Scholar] [CrossRef]
- Kim, J.-H. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data Anal. 2009, 53, 3735–3745. [Google Scholar] [CrossRef]
Performance Indicator | Decision | |
---|---|---|
Sensitivity | Specificity | |
Mean | 1 | 1 |
St. Dev. | 0.01 | 0.01 |
Min | 0.98 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namgung, K.; Yoon, H.; Baek, S.; Kim, D.Y. Estimating System State through Similarity Analysis of Signal Patterns. Sensors 2020, 20, 6839. https://doi.org/10.3390/s20236839
Namgung K, Yoon H, Baek S, Kim DY. Estimating System State through Similarity Analysis of Signal Patterns. Sensors. 2020; 20(23):6839. https://doi.org/10.3390/s20236839
Chicago/Turabian StyleNamgung, Kichang, Hyunsik Yoon, Sujeong Baek, and Duck Young Kim. 2020. "Estimating System State through Similarity Analysis of Signal Patterns" Sensors 20, no. 23: 6839. https://doi.org/10.3390/s20236839
APA StyleNamgung, K., Yoon, H., Baek, S., & Kim, D. Y. (2020). Estimating System State through Similarity Analysis of Signal Patterns. Sensors, 20(23), 6839. https://doi.org/10.3390/s20236839