Synthesis and Characterization of Ru-MOFs on Microelectrode for Trace Mercury Detection †
<p>The fabrication processes of the gold micro-electrode. (<b>a</b>,<b>b</b>) Step to prepare glass slide and glue. (<b>c</b>–<b>e</b>) Step to pattern metal layer and deposit gold layer. (<b>f</b>–<b>h</b>) Step to prepare the Su-8 layer.</p> "> Figure 2
<p>(<b>a</b>) Synthesis of Ru-MOFs by electrochemical cathode synthesis. (<b>b</b>) representative modulated synthesis</p> "> Figure 3
<p>SEM images of Ru-MOFs with magnification of (<b>a</b>) 2K and (<b>b</b>) 45K.</p> "> Figure 4
<p>(<b>a</b>) CV scan from −0.2 V–0.8 V in 0.1 M KCl. (<b>b</b>) DPSV in 5 ppb Hg<math display="inline"><semantics> <msup> <mrow/> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics></math> solution, the deposition condition was 120 s at −0.8 V.</p> "> Figure 5
<p>(<b>a</b>) current response of different Hg<math display="inline"><semantics> <msup> <mrow/> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics></math> concentrations; (<b>b</b>) liner response curve to Hg<math display="inline"><semantics> <msup> <mrow/> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics></math>.</p> "> Figure 6
<p>Current peak in the presence of 50 ppb marked metal ions followed by addition of 5 ppb Hg<math display="inline"><semantics> <msup> <mrow/> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </semantics></math> with the blank solution subtracted.</p> ">
Abstract
:1. Introduction
2. Exeprimental Section
2.1. Reagents
2.2. Apparatus
2.3. Fabrication of Gold Microelectrodes
2.4. Synthesis of the Ru-MOFs
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. The Process of Cathodic MOFs Deposition
3.2. Performance of Ru-MOFs
3.3. Mercury Determination with the Ru-MOFs Modified Microelectrode
3.4. Anti-Interference Test
3.5. Application to the Water Sample
3.6. Comparision with Other Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leopold, K.; Foulkes, M.; Worsfold, P. Methods for the determination and speciation of mercury in natural waters—A review. Anal. Chim. Acta 2010, 663, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Clevenger, W.L.; Smith, B.W.; Winefordner, J.D. Trace determination of mercury: A Review. Crit. Rev. Anal. Chem. 1997, 27, 1–26. [Google Scholar] [CrossRef]
- Leopold, K.; Foulkes, M.; Worsfold, P.J. Preconcentration techniques for the determination of mercury species in natural waters. TrAC Trends Anal. Chem. 2009, 28, 426–435. [Google Scholar] [CrossRef]
- Zhang, R.; Peng, M.; Zheng, C.; Xu, K.; Hou, X. Application of flow injection–green chemical vapor generation–atomic fluorescence spectrometry to ultrasensitive mercury speciation analysis of water and biological samples. Microchem. J. 2016, 127, 62–67. [Google Scholar] [CrossRef]
- Hight, S.C.; Cheng, J. Determination of total mercury in seafood by cold vapor-atomic absorption spectroscopy (CVAAS) after microwave decomposition. Food Chem. 2005, 91, 557–570. [Google Scholar] [CrossRef]
- Guo, T.; Baasner, J. Determination of mercury in urine by flow-injection cold vapour atomic absorption spectrometry. Anal. Chim. Acta 1993, 278, 189–196. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Q.; Li, S.; Luan, L.; Li, J.; Zhang, S.-X.; Dong, H. Hollow fiber supported ionic liquid membrane microextraction for speciation of mercury by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Anal. Methods 2015, 7, 1140–1146. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, B.; He, M.; Huang, T.; Hu, B. Speciation of mercury in water and fish samples by HPLC-ICP-MS after magnetic solid phase extraction. Talanta 2017, 171, 213–219. [Google Scholar] [CrossRef]
- Nan, X.; Huyan, Y.; Li, H.; Sun, S.; Xu, Y. Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+. Coord. Chem. Rev. 2020, 426, 213580. [Google Scholar] [CrossRef]
- Shi, J.; Chan, C.; Pang, Y.; Ye, W.; Tian, F.; Lyu, J.; Zhang, Y.; Yang, M. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens. Bioelectron. 2015, 67, 595–600. [Google Scholar] [CrossRef]
- Eskandari, L.; Andalib, F.; Fakhri, A.; Jabarabadi, M.K.; Pham, B.; Gupta, V.K. Facile colorimetric detection of Hg (II), photocatalytic and antibacterial efficiency based on silver-manganese disulfide/polyvinyl alcohol-chitosan nanocomposites. Int. J. Biol. Macromol. 2020, 164, 4138–4145. [Google Scholar] [CrossRef] [PubMed]
- Safavi, A.; Ahmadi, R.; Mohammadpour, Z. Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles. Sens. Actuators B Chem. 2017, 242, 609–615. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, H.; Fu, H.; Wei, Y.; Cai, W. Raman reporter-assisted Au nanorod arrays SERS nanoprobe for ultrasensitive detection of mercuric ion (Hg2+) with superior anti-interference performances. J. Hazard. Mater. 2020, 398, 122890. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yin, H.; Ma, W.; Kuang, H.; Wang, L.; Xu, C. Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosens. Bioelectron. 2015, 67, 472–476. [Google Scholar] [CrossRef]
- Murugan, E.; Santhoshkumar, S.; Govindaraju, S.; Palanichamy, M. Silver nanoparticles decorated g-C3N4: An efficient SERS substrate for monitoring catalytic reduction and selective Hg2+ions detection. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 2020, 246, 119036. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Bian, C.; Sun, J.; Tong, J.; Xia, S. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates. Biosens. Bioelectron. 2018, 114, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xia, S.; Wang, J.; Bian, C.; Tong, J. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry. J. Hazard. Mater. 2016, 301, 206–213. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Z.; Li, C.; Wu, H.; Wang, J.; Lu, Y. MOF Derived Iron Oxide-based Smart Plasmonic Ag/Au Hollow and Porous Nanoshells “Ultra-Microelectrodes” for Ultra-Sensitive Detection of Arsenic. J. Mater. Chem. A 2018, 6, 16164–16169. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kodamatani, H.; Kono, Y.; Takeuchi, A.; Takai, K.; Tomiyasu, T.; Marumo, K. Development of a deep-sea mercury sensor using in situ anodic stripping voltammetry. Geochem. J. 2015, 49, 613–620. [Google Scholar] [CrossRef]
- Xia, W.; Mahmood, A.; Zou, R.; Xu, Q. Metal-Organic Frameworks and their derived nanostructures for Electrochemical Energy Storage and Conversion. Energy Environ. Sci. 2015, 8, 1837–1866. [Google Scholar] [CrossRef]
- Hu, L.; Wang, F.X.; Balogun, M.S.; Tong, Y.X. Hollow Co2P/Co-carbon-based hybrids for lithium storage with improved pseudocapacitance and water oxidation anodes. J. Mater. Sci. Technol. 2020, 55, 203–211. [Google Scholar] [CrossRef]
- Reddy, R.C.K.; Lin, J.; Chen, Y.Y.; Zeng, C.H.; Lin, X.M.; Cai, Y.P.; Su, C.Y. Progress of nanostructured metal oxides derived from metal-organic frameworks as anode materials for lithium-ion batteries. Coord. Chem. Rev. 2020, 420, 21. [Google Scholar] [CrossRef]
- Yang, Q.; Vaesen, S.; Vishnuvarthan, M.; Ragon, F.; Serre, C.; Vimont, A.; Daturi, M.; De Weireld, G.; Maurin, G. Probing the adsorption performance of the hybrid porous MIL-68(Al): A synergic combination of experimental and modelling tools. J. Mater. Chem. 2012, 22, 10210–10220. [Google Scholar] [CrossRef]
- Ma, R.D.; Wang, F.Y.; Lin, J.Y.; Guo, H.D.; Zhou, T.; Guo, Z.Y.; Guo, X.M. An amino-decorated porous metal-organic framework for efficient C2 hydrocarbon/CH4 separation and high iodine adsorption. Microporous Mesoporous Mater. 2020, 305, 110306. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Long, J.; Yaghi, O. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef]
- Mantasha, I.; Saleh, H.A.M.; Qasem, K.M.A.; Shahid, M.; Mehtab, M.; Ahmad, M. Efficient and selective adsorption and separation of methylene blue (MB) from mixture of dyes in aqueous environment employing a Cu(II) based metal organic framework. Inorg. Chim. Acta 2020, 511, 11. [Google Scholar]
- Wang, N.; Lin, M.; Dai, H.; Ma, H.J.B. Bioelectronics, Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure. Biosens. Bioelectron. 2016, 79, 320–326. [Google Scholar] [CrossRef]
- Li, W.; Wu, X.; Han, N.; Chen, J.; Qian, X.; Deng, Y.; Tang, W.; Chen, Y. MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sens. Actuators B Chem. 2016, 225, 158–166. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, S.; Xiao, L.; Wang, H.; Li, S.; Yuan, Q. Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe3+. J. Mater. Chem. C 2015, 3, 291–297. [Google Scholar] [CrossRef]
- Li, L.; Han, S.S.; Yang, C.; Liu, L.; Zhao, S.Q.; Wang, X.F.; Liu, B.M.; Pan, H.; Liu, Y. Glycyrrhetinic acid modified MOFs for the treatment of liver cancer. Nanotechnology 2020, 31, 10. [Google Scholar] [CrossRef]
- Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhang, X.; Lu, Y.; Yang, Y.; Zhang, Y.P.; Tang, H.L.; Zhang, F.M.; Yang, Z.D.; Sun, X.J.; Feng, Y.J. Regulation of metal ions in smart metal-cluster nodes of metal-organic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction. Appl. Catal. Environ. 2020, 276, 119173. [Google Scholar] [CrossRef]
- Bai, C.H.; Li, A.Q.; Yao, X.F.; Liu, H.L.; Li, Y.W. Efficient and selective aerobic oxidation of alcohols catalysed by MOF-derived Co catalysts. Green Chem. 2016, 18, 1061–1069. [Google Scholar] [CrossRef]
- Ouyang, H.; Chen, N.; Chang, G.; Zhao, X.; Sun, Y.; Chen, S.; Zhang, H.; Yang, D. Selective capture of toxic selenite anions by bismuth-based metal–organic frameworks. Angewante Chemie 2018, 57, 13197–13201. [Google Scholar] [CrossRef]
- Lu, M.; Deng, Y.; Luo, Y.; Lv, J.; Li, T.; Xu, J.; Chen, S.-W.; Wang, J. Graphene aerogel–metal–organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal. Chem. 2019, 91, 888–895. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Huang, W.; Zhang, T.; Hu, X.Y.; Perman, J.A.; Ma, S.Q. A metal-organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J. Mater. Chem. A 2017, 5, 8385–8393. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, L.; Xu, C. Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 2015, 87, 3438–3444. [Google Scholar] [CrossRef]
- Jahan, M.; Bao, Q.; Loh, K.P. Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 6707–6713. [Google Scholar] [CrossRef]
- Stassen, I.; Styles, M.; Van Assche, T.; Campagnol, N.; Fransaer, J.; Denayer, J.; Tan, J.C.; Falcaro, P.; De Vos, D.; Ameloot, R. Electrochemical film deposition of the zirconium metal-organic framework UiO-66 and application in a miniaturized sorbent trap. Chem. Mater. 2015, 27, 1801–1807. [Google Scholar] [CrossRef]
- Van Assche, T.R.C.; Desmet, G.; Ameloot, R.; De Vos, D.E.; Terryn, H.; Denayer, J.F.M. Electrochemical synthesis of thin HKUST-1 layers on copper mesh. Microporous Mesoporous Mater. 2012, 158, 209–213. [Google Scholar] [CrossRef]
- Ji, L.D.; Wang, J.; Wu, K.B.; Yang, N.J. Tunable electrochemistry of electrosynthesized copper metal-organic frameworks. Adv. Funct. Mater. 2018, 28, 8. [Google Scholar] [CrossRef]
- Gonzalez-Juarez, M.D.; Flores, E.; Martin-Gonzalez, M.; Nandhakumar, I.; Bradshaw, D. Electrochemical deposition and thermoelectric characterisation of a semiconducting 2-D metal-organic framework thin film. J. Mater. Chem. A 2020, 8, 13197–13206. [Google Scholar] [CrossRef]
- Xiong, C.; Xu, Y.; Bian, C.; Wang, R.; Sun, J.; Xia, S. Ru-MOFs modified microelectrode for trace mercury detection. In Proceedings of the 2019 IEEE Sensors, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar]
- Campagnol, N.; Van Assche, T.; Stappers, L.; Denayer, J.F.M.; Binnemans, K.; De Vos, D.E.; Fransaer, J. On the electrochemical deposition of metal-organic frameworks. ECS Transac. 2014, 61, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Dincă, M. Reductive electrosynthesis of crystalline metal–organic frameworks. J. Am. Chem. Soc. 2011, 133, 12926–12929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Dincă, M. On the mechanism of MOF-5 formation under cathodic bias. Chem. Mater. 2015, 27, 3203–3206. [Google Scholar] [CrossRef]
- Sahoo, S.; Satpati, A.K.; Reddy, A.V.R. Electrodeposited Bi-Au nanocomposite modified carbon paste electrode for the simultaneous determination of copper and mercury. RSC Adv. 2015, 5, 25794–25800. [Google Scholar] [CrossRef] [Green Version]
- Palanisamy, S.; Thangavelu, K.; Chen, S.-M.; Velusamy, V.; Chang, M.-H.; Chen, T.-W.; Al-Hemaid, F.M.A.; Ali, M.A.; Ramaraj, S.K. Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sens. Actuators B Chem. 2017, 243, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Bui, M.-P.N.; Brockgreitens, J.; Ahmed, S.; Abbas, A. Dual detection of nitrate and mercury in water using disposable electrochemical sensors. Biosens. Bioelectron. 2016, 85, 280–286. [Google Scholar] [CrossRef] [Green Version]
Sample | Found (ppb) | Added (ppb) | Found (ppb) | Recovery |
---|---|---|---|---|
Tap water 1 | N.D | 0.5 | 0.53 ± 0.03 | 106% |
Tap water 2 | N.D | 2 | 2.17 ± 0.12 | 108.5% |
Tap water 3 | N.D | 4 | 3.74 ± 0.28 | 93.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, C.; Xu, Y.; Bian, C.; Wang, R.; Xie, Y.; Han, M.; Xia, S. Synthesis and Characterization of Ru-MOFs on Microelectrode for Trace Mercury Detection. Sensors 2020, 20, 6686. https://doi.org/10.3390/s20226686
Xiong C, Xu Y, Bian C, Wang R, Xie Y, Han M, Xia S. Synthesis and Characterization of Ru-MOFs on Microelectrode for Trace Mercury Detection. Sensors. 2020; 20(22):6686. https://doi.org/10.3390/s20226686
Chicago/Turabian StyleXiong, Chenyu, Yuhao Xu, Chao Bian, Ri Wang, Yong Xie, Mingjie Han, and Shanhong Xia. 2020. "Synthesis and Characterization of Ru-MOFs on Microelectrode for Trace Mercury Detection" Sensors 20, no. 22: 6686. https://doi.org/10.3390/s20226686
APA StyleXiong, C., Xu, Y., Bian, C., Wang, R., Xie, Y., Han, M., & Xia, S. (2020). Synthesis and Characterization of Ru-MOFs on Microelectrode for Trace Mercury Detection. Sensors, 20(22), 6686. https://doi.org/10.3390/s20226686