Comparison of Enhanced Noise Model Performance Based on Analysis of Civilian GPS Data
<p>The longitude and latitude errors at each location. Due to the large number of observations, the data have been decimated.</p> "> Figure 2
<p>The main figure shows the QQ-plot of the residual of latitude data (measured in metres) collected in Dunedin. The inset depicts the histogram of the same data. The <span class="html-italic">p</span>-values of two normality tests are also given in the top left corner. Based on this evidence, the data do not support the assumption that the residual follows a Gaussian distribution.</p> "> Figure 3
<p>Correlogram of latitude errors of a time series from Dunedin of ∼250 h. The dashed lines correspond to the classical 95% confidence interval, while the dash-dotted curve corresponds to the Box–Jenkins standard error. The thin solid line represents the exponentially decaying curve fitted to the first half-hour section. The inset depicts the empirical partial autocorrelation function.</p> "> Figure 4
<p>Correlogram of longitude errors for the GPS data taken in Port Douglas. The line styles are identical to those in <a href="#sensors-20-06050-f003" class="html-fig">Figure 3</a>.</p> "> Figure 5
<p>The partial autocorrelation function, <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>ρ</mi> <mo stretchy="false">^</mo> </mover> <mi mathvariant="normal">p</mi> </msub> <mrow> <mo>(</mo> <mi>h</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, for longitude, latitude, and altitude at all geographic locations visited. The lag is measured in seconds.</p> "> Figure 6
<p>The thick black solid line depicts <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ρ</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mo>(</mo> <mi>h</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for the GPS recordings on 15 August, 2014 in Dunedin, as in <a href="#sensors-20-06050-f003" class="html-fig">Figure 3</a>. All grey lines represent the autocorrelation function of a simulated Ornstein–Uhlenbeck process with input parameters <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mover accent="true"> <mi>μ</mi> <mo stretchy="false">^</mo> </mover> <mo>≅</mo> <mn>45.864</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">^</mo> </mover> <mo>≅</mo> <mn>1.329</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mover accent="true"> <mi>σ</mi> <mo stretchy="false">^</mo> </mover> <mo>≅</mo> <mn>2.745</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>7</mn> </mrow> </msup> </mrow> </semantics></math>. The lines labelled as ‘maximal’ and ‘minimal’ are connecting the extremal values of simulated autocorrelation functions at all lags.</p> "> Figure 7
<p>The Akaike’s Information Criterion (AIC) score for autoregressive (AR) models of increasing order using the Dunedin GPS altitude dataset recorded on 15 August 2014, scaled relative to the AIC score for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Description of the Data Collection Process
3. Analysis of Observations
Stochastic Processes
4. Modelling the Noise
4.1. Gaussian White Noise Model
4.2. Autoregressive Models
4.3. Moving Average Model
4.4. Autoregressive Moving Average Model
4.5. Ornstein–Uhlenbeck Model
5. Quantitative Analysis of Noise Models
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Short Description of the QQ-Plot Method for Testing Normality
References
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version]
- Zandbergen, P.A.; Barbeau, S.J. Positional accuracy of assisted GPS data from high-sensitivity GPS-enabled mobile phones. J. Navig. 2011, 64, 381–399. [Google Scholar] [CrossRef] [Green Version]
- Olynik, M.C. Temporal Characteristics of GPS Error Sources and Their Impact on Relative Positioning; University of Calgary: Calgary, AB, Canada, 2002. [Google Scholar]
- Van Nee, R.D. Multipath effects on GPS code phase measurements. Navigation 1992, 39, 177–190. [Google Scholar] [CrossRef]
- Georgiadou, Y.; Kleusberg, A. On carrier signal multipath effects in relative GPS positioning. Manuscripta Geod. 1988, 13, 172–179. [Google Scholar]
- Sigrist, P.; Coppin, P.; Hermy, M. Impact of forest canopy on quality and accuracy of GPS measurements. Int. J. Remote Sens. 1999, 20, 3595–3610. [Google Scholar] [CrossRef]
- Griffiths, J.; Ray, J.R. On the precision and accuracy of IGS orbits. J. Geod. 2009, 83, 277–287. [Google Scholar] [CrossRef]
- Forte, B. Analysis of the PLL phase error in presence of simulated ionospheric scintillation events. Radio Sci. 2012, 47, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Tiberius, C.; Jonkman, N.; Kenselaar, F. The stochastics of GPS observables. GPS World 1999, 10, 49–54. [Google Scholar]
- Xu, G.; Xu, Y. GPS: Theory, Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Santamaría-Gómez, A.; Bouin, M.N.; Collilieux, X.; Wöppelmann, G. Correlated errors in GPS position time series: Implications for velocity estimates. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
- Zhang, J.; Bock, Y.; Johnson, H.; Fang, P.; Williams, S.; Genrich, J.; Wdowinski, S.; Behr, J. Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities. J. Geophys. Res. Solid Earth 1997, 102, 18035–18055. [Google Scholar] [CrossRef]
- Bos, M.; Fernandes, R.; Williams, S.; Bastos, L. Fast error analysis of continuous GPS observations. J. Geod. 2008, 82, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Olivares, G.; Teferle, F. A Bayesian Monte Carlo Markov Chain Method for Parameter Estimation of Fractional Differenced Gaussian Processes. IEEE Trans. Signal Process. 2013, 61, 2405–2412. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Wang, J.; Park, P.H. An improvement of GPS height estimations: Stochastic modeling. Earth Planets Space 2005, 57, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Borre, K.; Tiberius, C. Time Series Analysis of GPS Observables. In Proceedings of the 13th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2000), Salt Lake City, UT, USA, 19–22 September 2000; pp. 1885–1894. [Google Scholar]
- Segall, P.; Davis, J.L. GPS applications for geodynamics and earthquake studies. Annu. Rev. Earth Planet. Sci. 1997, 25, 301–336. [Google Scholar] [CrossRef] [Green Version]
- Amiri-Simkooei, A.R. Noise in multivariate GPS position time-series. J. Geod. 2009, 83, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.D.P.; Bock, Y.; Fang, P.; Jamason, P.; Nikolaidis, R.M.; Prawirodirdjo, L.; Miller, M.; Johnson, D.J. Error analysis of continuous GPS position time series. J. Geophys. Res. Solid Earth 2004, 109, B03412. [Google Scholar] [CrossRef] [Green Version]
- Santamaría-Gómez, A.; Bouin, M.N.; Collilieux, X.; Wöppelmann, G. Chapter Time-Correlated GPS Noise Dependency on Data Time Period. In Reference Frames for Applications in Geosciences; Springer: Berlin/Heidelberg, Germany, 2013; pp. 119–124. [Google Scholar] [CrossRef]
- Kaplan, E.D.; Hegarty, C.J. Understanding GPS Principles and Applications, 2nd ed.; Artech House: Norwood, MA, USA, 2006. [Google Scholar]
- Thode, H. Testing for Normality; Taylor & Francis Group: Abingdon, UK, 2019. [Google Scholar]
- Yap, B.W.; Sim, C.H. Comparisons of various types of normality tests. J. Stat. Comput. Simul. 2011, 81, 2141–2155. [Google Scholar] [CrossRef]
- Pearson, E.S.I. Note on Tests for Normality. Biometrika 1931, 22, 423–424. [Google Scholar] [CrossRef]
- D’Agostino, R.B.; Belanger, A. A Suggestion for Using Powerful and Informative Tests of Normality. Am. Stat. 1990, 44, 316–321. [Google Scholar]
- Lilliefors, H.W. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Abdel-Hafez, M.F. The autocovariance least-squares technique for GPS measurement noise estimation. IEEE Trans. Veh. Technol. 2010, 59, 574–588. [Google Scholar] [CrossRef]
- Fallahi, K.; Cheng, C.T.; Fattouche, M. Robust positioning systems in the presence of outliers under weak GPS signal conditions. IEEE Syst. J. 2012, 6, 401–413. [Google Scholar] [CrossRef]
- Durbin, J. The Fitting of Time-Series Models. Rev. Int. Stat. Inst. 1960, 28, 233–244. [Google Scholar] [CrossRef]
- Durbin, J. Efficient Fitting of Linear Models for Continuous Stationary Time Series from Discrete Data; Technical Report; North Carolina State University, Department of Statistics: Raleigh, NC, USA, 1960. [Google Scholar]
- Durbin, J. Efficient fitting of linear models for continuous stationary time series from discrete data. Bull. Int. Stat. Inst. 1961, 38, 273–281. [Google Scholar]
- Cryer, J.D.; Chan, K.S. Time Series Analysis: With Applications in R; Springer: New York, NY, USA, 2008. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; Wiley Series in Probability and Statistics; John Wiley & Sons; Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Walker, A.M. Large-Sample Estimation of Parameters for Autoregressive Processes with Moving-Average Residuals. Biometrika 1962, 49, 117–131. [Google Scholar] [CrossRef]
- Box, G.E.P.; Pierce, D.A. Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. J. Am. Stat. Assoc. 1970, 65, 1509–1526. [Google Scholar] [CrossRef]
- Ljung, G.M.; Box, G.E.P. On a measure of lack of fit in time series models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis, Forecasting and Control, 3rd ed.; Prentice Hall: Englewood Clifs, NJ, USA, 1994. [Google Scholar]
- Bartlett, M.S. On the theoretical specification of sampling properties of an autocorrelated process. J. R. Stat. Soc. B 1946, 8, 27–41. [Google Scholar]
- Anderson, O. Time Series Analysis and Forecasting: The Box-Jenkins Approach; Butterworths: Carlisle City, UK, 1976. [Google Scholar]
- Fishman, G. Principles of Discrete Event Simulation; Wiley Series on Systems Engineering and Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1978. [Google Scholar]
- Porat, B. Digital Processing of Random Signals: Theory and Methods; Prentice Hall Information and System Sciences Series; Prentice Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 1973, 60, 255–265. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods; Springer Series in Statistics; Springer: New York, NY, USA, 1991. [Google Scholar]
- Astrom, K.; Soderstrom, T. Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model. IEEE Trans. Autom. Control 1974, 19, 769–773. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B.; Wald, A. On the Statistical Treatment of Linear Stochastic Difference Equations. Econometrica 1943, 11, 173–220. [Google Scholar] [CrossRef]
- Melard, G. Algorithm AS197: A Fast Algorithm for the Exact Likelihood of Autoregressive-Moving Average Models. J. R. Stat. Society. Ser. C Appl. Stat. 1984, 33, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Evans, L.C. An Introduction to Stochastic Differential Equations; American Mathematical Society: Berkeley, Berkeley, CA, 2014. [Google Scholar]
- Øksendal, B. Stochastic Differential Equations: An Introduction with Applications; Universitext; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Uhlenbeck, G.E.; Ornstein, L.S. On the Theory of the Brownian Motion. Phys. Rev. 1930, 36, 823–841. [Google Scholar] [CrossRef]
- Doob, J.L. The Brownian Movement and Stochastic Equations. Ann. Math. 1942, 43, 351–369. [Google Scholar] [CrossRef]
- Pedersen, A.R. A New Approach to Maximum Likelihood Estimation for Stochastic Differential Equations Based on Discrete Observations. Scand. J. Stat. 1995, 22, 55–71. [Google Scholar]
- Tang, C.Y.; Chen, S.X. Parameter estimation and bias correction for diffusion processes. J. Econom. 2009, 149, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Dacunha-Castelle, D.; Florens-Zmirou, D. Estimation of the coefficients of a diffusion from discrete observations. Stochastics 1986, 19, 263–284. [Google Scholar] [CrossRef]
- Kloeden, P.E.; Platen, E. Numerical Solution of Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 1992; Volume 23. [Google Scholar]
- Claeskens, G.; Hjort, N.L. Model Selection and Model Averaging; Cambridge Series in Statistical and Probabilistic Mathematics; Cambridge University Press: Cambridge, UK, 2008; p. 332. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Wendel, J.; Trommer, G.F. An Efficient Method for Considering Time Correlated Noise in GPS/INS Integration. In Proceedings of the 2004 National Technical Meeting of The Institute of Navigation, San Diego, CA, USA, 26–28 January 2004; pp. 903–911. [Google Scholar]
- Fox, C.; Norton, R.A.; Morrison, M.E.; Molteno, T.C. Sequential Bayesian Inference for Dynamical Systems Using the Finite Volume Method. In 2017 MATRIX Annals; Springer: Berlin/Heidelberg, Germany, 2019; pp. 13–23. [Google Scholar]
- Thode, H. Testing for Normality; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
Measurement Site | Latitude (South) | Longitude (East) | Dates |
---|---|---|---|
North Stradbroke Island | 27∘2514 | 153∘3052 | 14 September 2014 |
Port Douglas | 16∘2907 | 145∘2759 | 17 September 2014 |
Thursday Island | 10∘3479 | 142∘1347 | 21 September 2014 |
Dunedin | 45∘ 5150 | 170∘3048 | 6 August 2014 |
7 August 2014 | |||
15 August 2014 | |||
27 September 2014 | |||
5 October 2014 | |||
22 October 2014 |
Thursday Island | Gauss | AR(9) | MA(1) | MA(3) | ARMA(1, 1) | OU |
Latitude | 368,278 | 240,593 | ||||
Longitude | 490,408 | 369,403 | ||||
Altitude | 616,549 | 488,436 | ||||
Port Douglas | ARMA(1, 1) | |||||
Latitude | 1,080,721 | 749,275 | ||||
Longitude | 1,254,838 | 927,860 | ||||
Altitude | 1,445,244 | 1,112,076 | ||||
North Stradbroke | ARMA(2,2) | |||||
Latitude | 616,991 | 417,772 | 160,425 | 4099 | ||
Longitude | 552,469 | 369,864 | 138,410 | 48,340 | 5140 | |
Altitude | 991,469 | 783,784 | 549,365 | 280,719 | ||
Dunedin | ARMA(2,2) | OU | ||||
Latitude | 2,827,919 | |||||
Longitude | 2,202,644 | 945,600 | ||||
Altitude | 4,380,261 | 3,112,342 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soundy, A.W.R.; Panckhurst, B.J.; Brown, P.; Martin, A.; Molteno, T.C.A.; Schumayer, D. Comparison of Enhanced Noise Model Performance Based on Analysis of Civilian GPS Data. Sensors 2020, 20, 6050. https://doi.org/10.3390/s20216050
Soundy AWR, Panckhurst BJ, Brown P, Martin A, Molteno TCA, Schumayer D. Comparison of Enhanced Noise Model Performance Based on Analysis of Civilian GPS Data. Sensors. 2020; 20(21):6050. https://doi.org/10.3390/s20216050
Chicago/Turabian StyleSoundy, Andy W. R., Bradley J. Panckhurst, Phillip Brown, Andrew Martin, Timothy C. A. Molteno, and Daniel Schumayer. 2020. "Comparison of Enhanced Noise Model Performance Based on Analysis of Civilian GPS Data" Sensors 20, no. 21: 6050. https://doi.org/10.3390/s20216050