Array of Horns Fed by a Transverse Slotted Groove Gap Waveguide at 28 GHz
<p>Transmission line model of a linear array of slots. Each <span class="html-italic">Z</span> = <span class="html-italic">R</span> + <math display="inline"> <semantics> <mrow> <mi>j</mi> <mi>X</mi> </mrow> </semantics> </math> is the impedance of a slot on broad wall of a rectangular waveguide, according to [<a href="#B19-sensors-20-05311" class="html-bibr">19</a>], Part I and [<a href="#B20-sensors-20-05311" class="html-bibr">20</a>], Part II.</p> "> Figure 2
<p>Reflection coefficient versus frequency computed by the transmission line (TL) model of <a href="#sensors-20-05311-f001" class="html-fig">Figure 1</a>, according to [<a href="#B19-sensors-20-05311" class="html-bibr">19</a>], Part I and [<a href="#B20-sensors-20-05311" class="html-bibr">20</a>], Part II.</p> "> Figure 3
<p>Designed slot array in groove gap waveguide implemented with holes.</p> "> Figure 4
<p>Dispersion diagram of the glide symmetric unit cell.</p> "> Figure 5
<p>Geometrical details of the designed transverse waveguide slot array: (<b>a</b>) top view of the upper piece with slots; (<b>b</b>) zoomed-in view of part of the glide-symmetric hole-type electromagnetic bandgap (EBG); (<b>c</b>) side view.</p> "> Figure 6
<p>Simulated <math display="inline"> <semantics> <msub> <mi>S</mi> <mn>11</mn> </msub> </semantics> </math> for the designed slot array in groove gap waveguide and in conventional waveguide.</p> "> Figure 7
<p>Radiation pattern in E-plane at 28 GHz for the designed slot array in groove gap waveguide and in conventional rectangular waveguide. Corresponding result of the theoretical model by antenna theory is included as circle markers.</p> "> Figure 8
<p>Radiation pattern of the designed horn as a function of the height <span class="html-italic">h</span>.</p> "> Figure 9
<p>Designed horn and array of horns fed by the waveguide: (<b>a</b>) perspective views; (<b>b</b>) lateral view; (<b>c</b>) top view.</p> "> Figure 10
<p>Simulated <math display="inline"> <semantics> <msub> <mi>S</mi> <mn>11</mn> </msub> </semantics> </math> for the designed slot array in groove gap waveguide after adding the horns and comparison with the case without them.</p> "> Figure 11
<p>Comparison of the array radiation pattern in E-plane at 28 GHz between the cases with and without horns. Corresponding pattern computed from the theoretical model from [<a href="#B22-sensors-20-05311" class="html-bibr">22</a>] by horn array theory is included as cross markers.</p> "> Figure 12
<p>Comparison of the array radiation pattern in H-plane at 28 GHz between the cases with and without horns.</p> "> Figure 13
<p>Comparison of the gain of the slot array and the horn array.</p> "> Figure 14
<p>Manufactured prototypes.</p> "> Figure 15
<p>Measured <math display="inline"> <semantics> <msub> <mi>S</mi> <mn>11</mn> </msub> </semantics> </math> for the designed slot array in groove gap waveguide shown by red traces: (<b>a</b>) with slots only without horns; (<b>b</b>) with slot-fed horns. In both plots, simulation results of <a href="#sensors-20-05311-f010" class="html-fig">Figure 10</a> are included as blue traces for comparison.</p> "> Figure 16
<p>Measured H-plane at different frequencies for the two prototypes.</p> "> Figure 16 Cont.
<p>Measured H-plane at different frequencies for the two prototypes.</p> "> Figure 17
<p>Measured E-plane at different frequencies for the two prototypes.</p> "> Figure 18
<p>Measured gain for the two prototypes given as solid traces with markers. Broken traces (dashed or dotted) are corresponding simulated ones of <a href="#sensors-20-05311-f013" class="html-fig">Figure 13</a>.</p> "> Figure 19
<p>Measured co and cross polarization components in E-plane at 28.4 GHz for the two prototypes.</p> ">
Abstract
:1. Introduction
2. Theoretical Modeling
- slot length a’ = 7.1 mm,
- slot width b’ = 2 mm,
- wall (slot) thickness t = 1 mm,
- = 7.1 mm,
- = = = = 14.2 mm, being the separation distances between adjacent slots; since there are five slots in total considered in this work, there are four such separation distances (note that through are not drawn in TL-model of Figure 1),
- = 14.2 mm = distance from left-most slot to the input port (also not drawn in Figure 1),
- Also, either of the following two parameters may apply (depending on whether the “rotated series slot” or “displaced series slot” formulas are used, either set of which yields exactly identical results. Either: displacement d = 0 (centered slot) Or rotation angle = (transverse slot)).
3. Design of the Transverse Slot Array
4. Design of the Low Profile Horns
5. Experimental Results
Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Johnson, R.C.; Jasik, H. Antenna Engineering Handbook, 2nd ed.; McGraw-Hill: New York, NY, USA, 1984; Chapter 9. [Google Scholar]
- Josefsson, L. A waveguide transverse slot for array applications. IEEE Trans. Antennas Propag. 1993, 41, 845–850. [Google Scholar] [CrossRef]
- Josefsson, L. (Ed.) Slotted Waveguide Array Antennas: Theory, Analysis and Design; Electromagnetic Waves, Institution of Engineering and Technology: London, UK, 2018. [Google Scholar]
- Hirokawa, J.; Kirita, M.; Ando, M. A Linear Array of Transverse Slots on a Hollow Waveguide with a Layer of Parasitic Dipole-Quartets for Sidelobe Suppression. In Proceedings of the 2007 Asia-Pacific Microwave Conference, Bangkok, Thailand, 11–14 December 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Ueda, K.; Tsunemitsu, Y.; Goto, N. The waveguide slot array antenna using non resonant mode to improve grating lobes. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 764–765. [Google Scholar]
- Kildal, P.; Alfonso, E.; Valero-Nogueira, A.; Rajo-Iglesias, E. Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 84–87. [Google Scholar] [CrossRef]
- Kildal, P.; Zaman, A.U.; Rajo-Iglesias, E.; Alfonso, E.; Valero-Nogueira, A. Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression. Iet Microw. Antennas Propag. 2011, 5, 262–270. [Google Scholar] [CrossRef]
- Rajo-Iglesias, E.; Ferrando-Rocher, M.; Zaman, A.U. Gap Waveguide Technology for Millimeter-Wave Antenna Systems. IEEE Commun. Mag. 2018, 56, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Pucci, E.; Rajo-Iglesias, E.; Vázquez-Roy, J.; Kildal, P. Planar Dual-Mode Horn Array With Corporate-Feed Network in Inverted Microstrip Gap Waveguide. IEEE Trans. Antennas Propag. 2014, 62, 3534–3542. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Vosoogh, A.; Zaman, A.U.; Yang, J. A Slot Array Antenna With Single-Layered Corporate-Feed Based on Ridge Gap Waveguide in the 60 GHz Band. IEEE Trans. Antennas Propag. 2019, 67, 1650–1658. [Google Scholar] [CrossRef]
- Farahbakhsh, A.; Zarifi, D.; Zaman, A.U. A mmWave Wideband Slot Array Antenna Based on Ridge Gap Waveguide With 30% Bandwidth. IEEE Trans. Antennas Propag. 2018, 66, 1008–1013. [Google Scholar] [CrossRef]
- Ebrahimpouri, M.; Rajo-Iglesias, E.; Sipus, Z.; Quevedo-Teruel, O. Cost-Effective Gap Waveguide Technology Based on Glide-Symmetric Holey EBG Structures. IEEE Trans. Microw. Theory Tech. 2018, 66, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimpouri, M.; Quevedo-Teruel, O.; Rajo-Iglesias, E. Design Guidelines for Gap Waveguide Technology Based on Glide-Symmetric Holey Structures. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 542–544. [Google Scholar] [CrossRef]
- Rajo-Iglesias, E.; Ebrahimpouri, M.; Quevedo-Teruel, O. Wideband Phase Shifter in Groove Gap Waveguide Technology Implemented With Glide-Symmetric Holey EBG. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 476–478. [Google Scholar] [CrossRef]
- Memeletzoglou, N.; Rajo-Iglesias, E. Holey Metasurface Prism for the Reduction of the Dispersion of Gap Waveguide Leaky-Wave Antennas. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2582–2586. [Google Scholar] [CrossRef]
- Hsieh, C.; Mou Kehn, M.N.; Rajo-Iglesias, E. Design of a Transverse Slot Array in Groove Gap Waveguide using Horns at 28 GHz Band. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 2045–2046. [Google Scholar]
- Trinh-Van, S.; Song, S.C.; Seo, S.; Hwang, K.C. Grating Lobe Reduced Waveguide Slot Array Antenna. In Proceedings of the 2018 International Symposium on Antennas and Propagation (ISAP), Busan, Korea, 23–26 October 2018; pp. 1–2. [Google Scholar]
- Attia, H.; Sorkherizi, M.S.; Kishk, A.A. Reduction of grating lobes for slot antenna array at 60 GHz using multilayer spatial angular filter. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–25 July 2015; pp. 2043–2044. [Google Scholar] [CrossRef]
- Oliner, A. The impedance properties of narrow radiating slots in the broad face of rectangular waveguide: Part I–Theory. IRE Trans. Antennas Propag. 1957, 5, 4–11. [Google Scholar] [CrossRef]
- Oliner, A. The impedance propeties of narrow radiating slots in the broad face of rectangular waveguide: Part II–Comparison with measurement. IRE Trans. Antennas Propag. 1957, 5, 12–20. [Google Scholar] [CrossRef]
- Liao, Q.; Rajo-Iglesias, E.; Quevedo-Teruel, O. Ka -Band Fully Metallic TE40 Slot Array Antenna With Glide-Symmetric Gap Waveguide Technology. IEEE Trans. Antennas Propag. 2019, 67, 6410–6418. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 2nd ed.; John & Wiley Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Vosoogh, A.; Kildal, P.; Vassilev, V.; Zaman, A.U.; Carlsson, S. E-band 3-D metal printed wideband planar horn array antenna. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 304–305. [Google Scholar]
- Ferrando-Rocher, M.; Valero-Nogueira, A.; Herranz-Herruzo, J.I.; Teniente, J. 60 GHz Single-Layer Slot-Array Antenna Fed by Groove Gap Waveguide. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 846–850. [Google Scholar] [CrossRef]
- Farahbakhsh, A.; Zarifi, D.; Zaman, A.U. 60-GHz Groove Gap Waveguide Based Wideband H -Plane Power Dividers and Transitions: For Use in High-Gain Slot Array Antenna. IEEE Trans. Microw. Theory Tech. 2017, 65, 4111–4121. [Google Scholar] [CrossRef] [Green Version]
- Sakakibara, K.; Hirokawa, J.; Ando, M.; Goto, N. A Linearly-Polarized Slotted Waveguide Array Using Reflection-Cancelling Slot Pairs. IEICE Trans. Commun. 1994, E77-B, 511–518. [Google Scholar]
- Joubert, J. A transverse slot in the broad wall of inhomogeneously loaded rectangular waveguide for array applications. IEEE Microw. Guid. Wave Lett. 1995, 5, 37–39. [Google Scholar] [CrossRef]
- Sorwar Hossain, M.G.; Hirokawa, J.; Ando, M. A Waveguide Broad-Wall Transverse Slot Linear Array with Reflection-Canceling Inductive Posts and Grating-Lobe Suppressing Parasitic Dipoles. IEICE Trans. Electron. 2005, E88-C, 2266–2273. [Google Scholar] [CrossRef]
- Hossain, M.G.S.; Hirokawa, J.; Ando, M. Parasitic strip dipoles to suppress grating lobes in a waveguide transverse slot array. In Proceedings of the IEEE Antennas and Propagation Society Symposium, Monterey, CA, USA, 20–25 June 2004; Volume 3, pp. 2376–2379. [Google Scholar]
- Hossain, M.G.S.; Hirokawa, J.; Ando, M. Grating lobes suppression in transverse slot linear array with a dual parasitic beam of strip dipoles. IEICE Trans. Commun. 2005, E88-B, 2320–2326. [Google Scholar] [CrossRef]
- Katyayani, V.; Vahini, N.S.; Krishna, D.R.; Pandharipande, V.M. Design of Substrate Integrated Waveguide Slot Array Antenna at X-Band. In Proceedings of the 2018 IEEE Indian Conference on Antennas and Propogation (InCAP), Hyderabad, India, 16–19 December 2018; pp. 1–5. [Google Scholar]
- Ripoll-Solano, L.; Torres-Herrera, L.; Sierra-Pérez, M. Design, Simulation and Optimization of a Slotted Waveguide Array with Central Feed and Low Sidelobes. In Proceedings of the 2018 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cartagena des Indias, Colombia, 10–14 September 2018; pp. 886–889. [Google Scholar]
- Yamac, Y.E.; Kizilay, A. A Waveguide Slot Array antenna design for X-band radar. In Proceedings of the 2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), Kharkiv, Ukraine, 20–24 June 2016; pp. 1–5. [Google Scholar]
- Jin, L.; Lee, R.M.; Robertson, I.D. Analysis and design of a slotted waveguide antenna array using hollow substrate integrated waveguide. In Proceedings of the 2015 European Radar Conference (EuRAD), Paris, France, 7–10 September 2015; pp. 401–404. [Google Scholar]
- Araki, T.; Sakakibara, K.; Kikuma, N.; Hirayama, H. Grating lobe suppression of narrow-wall slotted waveguide array antenna using thin narrow-wall waveguides in millimeter-wave band. In Proceedings of the 2014 International Symposium on Antennas and Propagation Conference Proceedings, Kaohsiung, Taiwan, 2–5 December 2014; pp. 139–140. [Google Scholar]
- Zheng, Y.; Chen, S. Waveguide slot array antenna with corner reflector array. In Proceedings of the 2013 International Workshop on Microwave and Millimeter Wave Circuits and System Technology, Chengdu, China, 24–25 October 2013; pp. 69–71. [Google Scholar]
REF. | Fractional Bandwidth, Center Frequency | Undesired Lobe Suppression (dB) | Antenna Efficiency (dB) | Needs Dielectric |
---|---|---|---|---|
[31] | 2.45%, 9.89 GHz | 9 | −3.15 | Yes |
[17] | 3.4%, no info | 8.1 | −2.08 | No |
[32] | 2.5%, 12 GHz | N.A.(no basis) | −3.07 | No |
[33] | 1%, 9.5 GHz | N.A.(no basis) | −3.73 | No |
[34] | 3.85%, 35.1 GHz | 12 | −2.433 | Yes |
[35] | 1.3%, 76.5 GHz | 13 | no info | No |
[36] | No info | N.A.(no basis) | −4.08 | No |
Ours | 3%, 28.175 GHz | 12 | −2.46 | No |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng Mou Kehn, M.; Hsieh, C.-K.; Rajo-Iglesias, E. Array of Horns Fed by a Transverse Slotted Groove Gap Waveguide at 28 GHz. Sensors 2020, 20, 5311. https://doi.org/10.3390/s20185311
Ng Mou Kehn M, Hsieh C-K, Rajo-Iglesias E. Array of Horns Fed by a Transverse Slotted Groove Gap Waveguide at 28 GHz. Sensors. 2020; 20(18):5311. https://doi.org/10.3390/s20185311
Chicago/Turabian StyleNg Mou Kehn, Malcolm, Chih-Kai Hsieh, and Eva Rajo-Iglesias. 2020. "Array of Horns Fed by a Transverse Slotted Groove Gap Waveguide at 28 GHz" Sensors 20, no. 18: 5311. https://doi.org/10.3390/s20185311