Thermo-Optical Tuning Cascaded Double Ring Sensor with Large Measurement Range
<p>Schematic image of the total sensing system. BLS: broadband light source. TPBF: tunable pass band filter. PC: personal computer.</p> "> Figure 2
<p>Operating principle of the thermo-optic tuning cascaded double ring (TTCDR) sensor. (<b>a</b>) is the transmission spectrum and the spectrum of the broadband light source (dashed red line) without the refractive index changes, and (<b>b</b>) the output spectrum is the product of the BLS spectrum and the transmission spectrum. (<b>c</b>) When the refractive index changes Δn, the transmission spectrum shifts from dashed black line to the solid blue line. (<b>d</b>) The output spectrum. (<b>e</b>) When the microheater is applied by an electric power Δ<span class="html-italic">P<sub>elec</sub></span>, the transmission spectrum shifts from the dashed blue line to the solid black line. (<b>f</b>) is the output spectrum for the electric power Δ<span class="html-italic">P<sub>elec</sub></span> change.</p> "> Figure 3
<p>(<b>a</b>) Optical microscope image of the sensor chip. (<b>b</b>) SEM image of the sensing ring. (<b>c</b>) SEM image of the directional coupler.</p> "> Figure 4
<p>(<b>a</b>) Figure of the microflow control system. (<b>b</b>) SEM image of the TiN microheater.</p> "> Figure 5
<p>Experimental transmission spectrum of the drop port with the refractive index of <math display="inline"><semantics> <mrow> <mn>1.8</mn> <mo>×</mo> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math> refractive index units (RIU) (1.0% NaCl solution), 2.7 × 10<sup>−3</sup> RIU (1.5% NaCl solution), and the spectrum of the input BLS through TPBF.</p> "> Figure 6
<p>(<b>a</b>) The fitting curve of the normalized output power varies with the electric power under the refractive index of RIU (1.0% NaCl solution). (<b>b</b>) Measured normalized output power versus the refractive index change of NaCl solutions with different concentrations and a fitting curve based on 0-mW electric power.</p> "> Figure 7
<p>The fitting curve of the electric power changes versus the refractive index changes of the different NaCl solution concentrations.</p> ">
Abstract
:1. Introduction
2. Operating Device and Principle
3. Experiments and Results
3.1. Fabrication of TTCDR Chip and Characterization
3.2. Intensity Interrogation with Thermo-Optic Tuning
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Vos, K.; Bartolozzi, I.; Schacht, E.; Bienstman, P.; Baets, R. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt. Express 2007, 15, 7610–7615. [Google Scholar] [CrossRef]
- Xu, Q.; Fattal, D.; Beausoleil, R.G. Silicon microring resonators with 1.5-μm radius. Opt. Express 2008, 16, 4309–4315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.R.; Fauchet, P.M. Nanoscale microcavity sensor for single particle detection. Opt. Lett. 2007, 32, 3284–3286. [Google Scholar] [CrossRef] [PubMed]
- Chalyan, T.; Guider, R.; Pasquardini, L.; Zanetti, M.; Falke, F.; Schreuder, E.; Heideman, R.G.; Pederzolli, C.; Pavesi, L. Asymmetric Mach–Zehnder interferometer based biosensors for aflatoxin M1 detection. Biosensors 2016, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Liu, Y.; Shen, X.; Chang, Z.; Tang, L.; Dong, W.F.; Li, M.; He, J.J. Ultrasensitive detection of testosterone using microring resonator with molecularly imprinted polymers. Sensors 2015, 15, 31558–31565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.; Li, M.; He, J.-J. Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect. Opt. Commun. 2011, 284, 156–159. [Google Scholar] [CrossRef]
- Wade, H.J.; Alsop, T.A.; Vertin, R.N.; Yang, H.; Johnson, D.M.; Bailey, C.R. Rapid, Multiplexed Phosphoprotein Profiling Using Silicon Photonic Sensor Arrays. ACS Cent. Sci. 2015, 1, 374–382. [Google Scholar] [CrossRef]
- Iqbal, M.; Gleeson, A.M.; Spaugh, B.; Tybor, F.; Gunn, G.W.; Hochberg, M.; Baehr-Jones, T.; Bailey, C.R.; Gunn, L. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 654–661. [Google Scholar] [CrossRef]
- Vos, K.D.; Girones, J.; Claes, T.; Koninck, Y.D.; Popelka, S.; Schacht, E.; Baets, R.; Bienstman, P. Multiplexed Antibody Detection with an Array of Silicon-on-Insulator Microring Resonators. IEEE Photonics J. 2009, 1, 225–235. [Google Scholar] [CrossRef]
- Eisner, L.; Wilhelm, I.; Flachenecker, G.; Hürttlen, J.; Schade, W. Molecularly Imprinted Sol-Gel for TNT Detection with Optical Micro-Ring Resonator Sensor Chips. Sensors 2019, 19, 3909. [Google Scholar] [CrossRef] [Green Version]
- Klimov, N.N.; Mittal, S.; Berger, M.; Ahmed, Z. On-chip silicon waveguide Bragg grating photonic temperature sensor. Opt. Lett. 2015, 40, 3934–3936. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Yu, M. Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express 2016, 24, 9501–9510. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Luo, X.; Kee, J.S.; Han, K.; Li, C.; Park, M.K.; Tu, X.; Zhang, H.; Fang, Q.; Jia, L.; et al. Silicon-based optoelectronic integrated circuit for label-free bio/chemical sensor. Opt. Express 2013, 21, 17931–17940. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Li, M.; He, J.-J. Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source. Opt. Lett. 2011, 36, 1128–1130. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Li, M.; He, J.-J. Analysis of wavelength and intensity interrogation methods in cascaded double-ring sensors. J. Lightwave Technol. 2012, 30, 1994–2002. [Google Scholar] [CrossRef]
- Kim, K.W.; Song, J.; Kee, J.S.; Liu, Q.; Lo, G.; Park, M.K. Label-free biosensor based on an electrical tracing-assisted silicon microring resonator with a low-cost broadband source. Biosens. Bioelectron. 2013, 46, 15–21. [Google Scholar] [CrossRef]
- Prasad, R.P.; Selvaraja, K.S.; Varma, M.M. Thermo-optical tuning of cascaded double micro-ring resonators for dynamic range enhancement. Proc. SPIE 2016. [Google Scholar] [CrossRef]
- Prasad, P.R.; Selvaraja, S.K.; Varma, M.M. Full-Range detection in cascaded microring sensors using thermooptical tuning. J. Lightwave Technol. 2016, 34, 5157–5163. [Google Scholar] [CrossRef]
- Han, X.; Shao, Y.; Han, X.; Lu, Z.; Wu, Z.; Teng, J.; Ren, J.; Zhao, M. Athermal optical waveguide microring biosensor with intensity interrogation. Opt. Commun. 2015, 356, 41–48. [Google Scholar]
- Liang, Y.; Liu, Q.; Wu, Z.; Morthier, G.; Zhao, M. Cascaded-Microrings Biosensors Fabricated on a Polymer Platform. Sensors 2019, 19, 181. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Ye, J.; Zou, J.; Li, M.; He, J.-J. Cascaded silicon-on-insulator double-ring sensors operating in high sensitivity transverse-magnetic mode. Opt. Lett. 2013, 38, 1349–1351. [Google Scholar] [CrossRef]
- Rankin, D.W.H. CRC Handbook of Chemistry and Physics, 89th ed.; Lide, D.R., Ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
Concentration of NaCl Solution | Refractive Index Units |
---|---|
1.0% | 1.8 RIU |
1.1% | 1.98 RIU |
1.2% | 2.16 RIU |
1.3% | 2.34 RIU |
1.4% | 2.52 RIU |
1.5% | 2.7 RIU |
2.0% | 3.6 RIU |
3.0% | 5.4 RIU |
4.0% | 7.2 RIU |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Wang, Y.; Su, C.; Shao, L.; He, J.-J.; Li, M. Thermo-Optical Tuning Cascaded Double Ring Sensor with Large Measurement Range. Sensors 2020, 20, 5149. https://doi.org/10.3390/s20185149
Yang Z, Wang Y, Su C, Shao L, He J-J, Li M. Thermo-Optical Tuning Cascaded Double Ring Sensor with Large Measurement Range. Sensors. 2020; 20(18):5149. https://doi.org/10.3390/s20185149
Chicago/Turabian StyleYang, Zhiping, Yanlu Wang, Chang Su, Liyang Shao, Jian-Jun He, and Mingyu Li. 2020. "Thermo-Optical Tuning Cascaded Double Ring Sensor with Large Measurement Range" Sensors 20, no. 18: 5149. https://doi.org/10.3390/s20185149
APA StyleYang, Z., Wang, Y., Su, C., Shao, L., He, J. -J., & Li, M. (2020). Thermo-Optical Tuning Cascaded Double Ring Sensor with Large Measurement Range. Sensors, 20(18), 5149. https://doi.org/10.3390/s20185149