An Advanced Edge-Detection Method for Noncontact Structural Displacement Monitoring
<p>Flowchart of the proposed image-based vision sensor method.</p> "> Figure 2
<p>Processed image: (<b>a</b>) Original image; (<b>b</b>) Grayscale image; (<b>c</b>) Edges in the image.</p> "> Figure 3
<p>Model of edge: (<b>a</b>) Original edge and (<b>b</b>) Edge after rotation.</p> "> Figure 4
<p>Performance of subpixel method and integer-pixel method. (<b>a</b>) The overall image, (<b>b</b>) Zoom-in detail of (<b>a</b>).</p> "> Figure 5
<p>Set-up for lab experiment.</p> "> Figure 6
<p>(<b>a</b>) Comparison of captured displacements with the input vibration with a frequency of 2 Hz and amplitude of 4 mm, and (<b>b</b>) Error analysis.</p> "> Figure 7
<p>(<b>a</b>) Comparison of captured displacement with the input vibration at a frequency of 2.5 Hz and amplitude of 2 mm, and (<b>b</b>) Error analysis.</p> "> Figure 8
<p>(<b>a</b>) Comparison of captured displacement data with input sinusoidal function with frequency of 3 Hz and amplitude of 1.5 mm and (<b>b</b>) Error analysis.</p> "> Figure 9
<p>Error analysis of experiments: (<b>a</b>) 4 mm at 2 Hz; (<b>b</b>) 2 mm at 2.5 Hz; (<b>c</b>) 1.5 mm at 3 Hz (Sub—subpixel method, Int—integer pixel method, Mems—MEMS accelerometer method).</p> "> Figure 9 Cont.
<p>Error analysis of experiments: (<b>a</b>) 4 mm at 2 Hz; (<b>b</b>) 2 mm at 2.5 Hz; (<b>c</b>) 1.5 mm at 3 Hz (Sub—subpixel method, Int—integer pixel method, Mems—MEMS accelerometer method).</p> "> Figure 10
<p>Setup of street sign experiment: (<b>a</b>) Field photo, (<b>b</b>) Front view with dimensions, (<b>c</b>) Side view with dimensions.</p> "> Figure 11
<p>Vibration of street sign using subpixel image processing.</p> "> Figure 12
<p>Modal frequencies of street sign at measured location.</p> "> Figure 13
<p>(<b>a</b>) Setup of the steel beam vibration test, (<b>b</b>) Schematic diagram of the experiment setup (1’ = 12’’ = 0.3048 m).</p> "> Figure 14
<p>Natural frequency of the undamaged steel beam through the MEMS accelerometer and subpixel image method.</p> "> Figure 15
<p>Natural frequency of the damaged steel beam through the MEMS accelerometer and subpixel image method.</p> "> Figure 16
<p>Mode shape analysis. (<b>a</b>) Mode shapes of the undamaged and the damaged steel beam. (<b>b</b>) Differences in the normalized displacement between the undamaged mode shape and damaged mode shape.</p> ">
Abstract
:1. Introduction
2. Proposed Displacement Measurement Method
3. Principles of Zernike Moment-Based Subpixel Edge Detection
4. Lab Experiments and Results
4.1. Lab Experiments
4.2. Results of Lab Experiments
4.3. Field Test Monitoring the Vibration of a Street Sign
4.4. Identification of Damage through Image Analysis
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Data Availability Statement
References
- Nassif, H.H.; Gindy, M.; Davis, J. Comparison of laser doppler vibrometer with contact sensors for monitoring bridge deflection and vibration. NDT E Int. 2005, 38, 213–218. [Google Scholar] [CrossRef]
- Gentile, C.; Bernardini, G. An interferometric radar for non-contact measurement of deflections on civil engineering structures: Laboratory and full-scale tests. Struct. Infrastruct. Eng. 2009, 6, 521–534. [Google Scholar] [CrossRef]
- Kohut, P.; Holak, K.; Uhl, T.; Ortyl, Ł.; Owerko, T.; Kuras, P.; Kocierz, R. Monitoring of a civil structure’s state based on noncontact measurements. Struct. Health Monit. 2013, 12, 411–429. [Google Scholar] [CrossRef]
- Fukuda, Y.; Feng, M.Q.; Shinozuka, M. Cost-Effective vision-based system for monitoring dynamic response of civil engineering structures. Struct. Control Health Monit. 2010, 17, 918–936. [Google Scholar] [CrossRef]
- Ribeiro, D.; Calçada, R.; Ferreira, J.; Martins, T. Non-Contact measurement of the dynamic displacement of railway bridges using an advanced video-based system. Eng. Struct. 2014, 75, 164–180. [Google Scholar] [CrossRef]
- Olaszek, P. Investigation of the dynamic characteristic of bridge structures using a computer vision method. Measurement 1999, 25, 227–236. [Google Scholar] [CrossRef]
- Sładek, J.; Ostrowska, K.; Kohut, P.; Holak, K.; Gąska, A.; Uhl, T. Development of a vision-based deflection measurement system and its accuracy assessment. Measurement 2013, 46, 1237–1249. [Google Scholar] [CrossRef]
- Wu, L.J.; Casciati, F.; Casciati, S. Dynamic testing of a laboratory model via vision-based sensing. Eng. Struct. 2014, 60, 113–125. [Google Scholar] [CrossRef]
- Busca, G.; Cigada, A.; Mazzoleni, P.; Zappa, E. Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system. Exp. Mech. 2014, 54, 255–271. [Google Scholar] [CrossRef]
- Poudel, U.P.; Fu, G.; Ye, J. Structural damage detection using digital video imaging technique and wavelet transformation. J. Sound Vib. 2005, 286, 869–895. [Google Scholar] [CrossRef]
- Wahbeh, A.M.; Caffrey, J.P.; Masri, S.F. A vision-based approach for the direct measurement of displacements in vibrating systems. Smart Mater. Struct. 2003, 12, 785. [Google Scholar] [CrossRef]
- Debella-Gilo, M.; Kääb, A. Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens. Environ. 2011, 115, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C.; Wu, W.-H.; Tseng, H.-Z.; Chen, C.-H.; Lai, G. Application of digital photogrammetry techniques in identifying the mode shape ratios of stay cables with multiple camcorders. Measurement 2015, 75, 134–146. [Google Scholar] [CrossRef]
- Feng, D.; Feng, M.Q.; Ozer, E.; Fukuda, Y. A vision-based sensor for noncontact structural displacement measurement. Sensors 2015, 15, 16557–16575. [Google Scholar] [CrossRef]
- Santos, C.A.; Costa, C.O.; Batista, J.P. Calibration methodology of a vision system for measuring the displacements of long-deck suspension bridges. Struct. Control. Health Monit. 2012, 19, 385–404. [Google Scholar] [CrossRef]
- Schumacher, T.; Shariati, A. Monitoring of structures and mechanical systems using virtual visual sensors for video analysis: Fundamental concept and proof of feasibility. Sensors 2013, 13, 16551–16564. [Google Scholar] [CrossRef]
- Park, J.W.; Lee, J.J.; Jung, H.J.; Myung, H. Vision-based displacement measurement method for high-rise building structures using partitioning approach. NDT E Int. 2011, 43, 642–647. [Google Scholar] [CrossRef]
- Chan, T.H.T.; Ashebo, D.B.; Tam, H.Y. Vertical displacement measurements for bridges using optical fiber sensors and CCD cameras—A Preliminary Study. Struct. Health Monit. 2009, 8, 243–249. [Google Scholar] [CrossRef]
- Fioriti, V.; Roselli, I.; Tatì, A.; Romano, R.; De Canio, G. Motion Magnification Analysis for Structural Monitoring of Ancient Constructions. Measurement 2018, 129, 375–380. [Google Scholar] [CrossRef]
- Wang, M.H. The Application of Invariants Theory in Pattern Recognition. Master’s Thesis, Yanshan University, Qinhuangdao, China, 2004. [Google Scholar]
- Teague, M.R. Image analysis via the general theory of moments. JOSA 1980, 70, 920–930. [Google Scholar] [CrossRef]
- Abdallah, S.M.; Nebot, E.M.; Rye, D.C. Object recognition and orientation via Zernike moments. In Asian Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 1998; pp. 386–393. [Google Scholar]
- Mao, J.X.; Wang, H.; Spencer, B.F. Toward data anomaly detection for automated structural health monitoring: Exploiting generative adversarial nets and autoencoders. Struct. Health Monit. 2020, 1–18. [Google Scholar] [CrossRef]
m/n | 0 | 1 |
0 | 1 | / |
1 | / | |
2 | / | |
3 | / | |
4 | / |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Yang, M.; Ajmera, B. An Advanced Edge-Detection Method for Noncontact Structural Displacement Monitoring. Sensors 2020, 20, 4941. https://doi.org/10.3390/s20174941
Bai X, Yang M, Ajmera B. An Advanced Edge-Detection Method for Noncontact Structural Displacement Monitoring. Sensors. 2020; 20(17):4941. https://doi.org/10.3390/s20174941
Chicago/Turabian StyleBai, Xin, Mijia Yang, and Beena Ajmera. 2020. "An Advanced Edge-Detection Method for Noncontact Structural Displacement Monitoring" Sensors 20, no. 17: 4941. https://doi.org/10.3390/s20174941
APA StyleBai, X., Yang, M., & Ajmera, B. (2020). An Advanced Edge-Detection Method for Noncontact Structural Displacement Monitoring. Sensors, 20(17), 4941. https://doi.org/10.3390/s20174941