Three-Dimensional Chipless RFID Tags: Fabrication through Additive Manufacturing
<p>Three-dimensional (3D) view of the probe-fed cylindrical DRA.</p> "> Figure 2
<p>Lateral and top view of the first iteration for the tag design process.</p> "> Figure 3
<p>Real (continuous) and imaginary (dashed) part of the input impedance as a function of frequency considering the probe alone placed on the top metal cap (<b>a</b>), the dielectric structure without the metal bottom cap (<b>b</b>) and with both metal caps (<b>c</b>).</p> "> Figure 4
<p>Lateral and top view of the second iteration of the design process in which an empty annular sector is introduced.</p> "> Figure 5
<p>Imaginary part of the input impedance as a function of frequency in case the width and the height of the empty ring are fixed (<b>a</b>), and by varying the width of the empty ring for a fixed R<sub>2</sub> (<b>b</b>).</p> "> Figure 6
<p>Lateral and top view of the third iteration of the design process in which an empty annular sector is introduced.</p> "> Figure 7
<p>Imaginary part of the input impedance as a function of frequency in case the first empty ring is fixed and the position of the second one is changed (<b>a</b>), and by fixing the second empty ring and changing the position of the first one (<b>b</b>).</p> "> Figure 8
<p>Effect of the presence of an air gap around the connector tip and the dielectric material (see <a href="#sensors-20-04740-f006" class="html-fig">Figure 6</a>) on the imaginary part of impedance Im(z). All curves refer to a tag with total height h<sub>d</sub> = 22 mm, height of void inclusions h<sub>r</sub> = 14.5 mm and void inclusions radii R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, R<sub>4</sub> = 10, 13, 25, 28 mm, respectively.</p> "> Figure 9
<p>Representation of the tolerated uncertainty regions obtained by considering the first and Table 3. mm, tag height is 22 mm and the height of the rings is 14.5 mm.</p> "> Figure 10
<p>Representation of the couples of resonance frequencies of different tag families characterized by different thicknesses and heights. w<sub>1</sub> is the thickness of the first empty ring, w<sub>2</sub> is the thickness of the second one, and h<sub>r</sub> is the height of both rings.</p> "> Figure 11
<p>Regions of uncertainty classified according to the number of their intersections marked by the symbol # in the figure.</p> "> Figure 12
<p>Flow chart of the algorithm to select the maximum number of unambiguous identification states.</p> "> Figure 13
<p>Three-dimensional (3D)-printed tag prototype during the realization phase.</p> "> Figure 14
<p>Final assembled prototype of the realized 3D chipless tag.</p> "> Figure 15
<p>Comparison between simulated and measured results for the manufactured prototype (<span class="html-italic">h<sub>d</sub></span> = 22 mm, <span class="html-italic">h<sub>r</sub></span> =14.5 mm, <span class="html-italic">R<sub>1</sub></span>, <span class="html-italic">R<sub>2</sub></span>, <span class="html-italic">R<sub>3</sub></span>, <span class="html-italic">R<sub>4</sub></span> = 4, 7, 19, 22 mm respectively, <span class="html-italic">r<sub>d</sub></span> = 35 mm and <span class="html-italic">h<sub>g</sub></span> = 4 mm).</p> ">
Abstract
:1. Introduction
2. 3D-Printed Chipless RFID Tag
3. Encoding and Decoding Scheme
4. Prototype Realization and Measurements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing, 2nd ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Yang, L.; Hsu, K.; Baughman, B.; Godfrey, D.; Medina, F.; Menon, M.; Wiener, S. Additive Manufacturing of Metals: The Technology, Materials, Design and Production; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Zhang, S.; Cadman, D.; Whittow, W.; Vardaxoglou, J.C. Enabling extrusion based additive manufacturing for RF applications: Challenges and opportunities. In Proceedings of the 12th European Conference on Antennas and Propagation, London, UK, 9–13 April 2018; pp. 1–5. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Salim, A.; Ghosh, S.; Lim, S. Low-Cost and Lightweight 3D-Printed Split-Ring Resonator for Chemical Sensing Applications. Sensors 2018, 18, 3049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herter, J.; Wunderlich, V.; Janeczka, C.; Zamora, V. Experimental Demonstration of Temperature Sensing with Packaged Glass Bottle Microresonators. Sensors 2018, 18, 4321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emon, M.O.F.; Choi, J.W. Flexible Piezoresistive Sensors Embedded in 3D Printed Tires. Sensors 2017, 17, 656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manafi, S.; González, J.M.F.; Filipovic, D.S. Design of a Perforated Flat Luneburg Lens Antenna Array for Wideband Millimeter-Wave Applications. In Proceedings of the 2019 13th European Conference on Antennas and Propagation, Małopolskie, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Sanz-Izquierdo, B.; Parker, E.A. 3D printed FSS arrays for long wavelength applications. In Proceedings of the 8th European Conference on Antennas and Propagation, The Hague, The Netherlands, 6–11 April 2014; pp. 2382–2386. [Google Scholar]
- Espalin, D.; Muse, D.W.; MacDonald, E.; Wicker, R.B. 3D Printing multifunctionality: Structures with electronics. Int. J. Adv. Manuf. Technol. 2014, 72, 963–978. [Google Scholar] [CrossRef]
- Nayeri, P.; Liang, M.; Sabory-Garcı, R.A.; Tuo, M.; Yang, F.; Gehm, M.; Xin, H.; Elsherbeni, A.Z. 3D Printed Dielectric Reflectarrays: Low-Cost High-Gain Antennas at Sub-Millimeter Waves. IEEE Trans. Antennas Propag. 2014, 62, 2000–2008. [Google Scholar] [CrossRef]
- Teniente, J.; Iriarte, J.C.; Caballero, R.; Valcázar, D.; Goni, M.; Martínez, A. 3-D Printed Horn Antennas and Components Performance for Space and Telecommunications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2070–2074. [Google Scholar] [CrossRef]
- BYRNE, B.; CAPET, N. Compact 3D Printed Antenna Technology for Nanosat/Cubesat Applications. In Proceedings of the 2019 13th European Conference on Antennas and Propagation, Małopolskie, Poland, 31 March–5 April 2019; pp. 1–3. [Google Scholar]
- Ramirez, R.A.; Rojas-Nastrucci, E.A.; Weller, T.M. UHF RFID Tags for On-/Off-Metal Applications Fabricated Using Additive Manufacturing. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1635–1638. [Google Scholar] [CrossRef]
- Moscato, S.; Bahr, R.; Le, T.; Pasian, M.; Bozzi, M.; Perregrini, L.; Tentzeris, M.M. Infill-Dependent 3-D-Printed Material Based on NinjaFlex Filament for Antenna Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1506–1509. [Google Scholar] [CrossRef]
- Chieh, J.C.S.; Dick, B.; Loui, S.; Rockway, J.D. Development of a Ku-Band Corrugated Conical Horn Using 3-D Print Technology. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 201–204. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, Y.X.; Zirath, H.; Zhang, Y.P. Investigation on 3-D-Printing Technologies for Millimeter- Wave and Terahertz Applications. Proc. IEEE 2017, 105, 723–736. [Google Scholar] [CrossRef]
- Bolic, M.; Simplot-Ryl, D.; Stojmenovic, I. RFID Systems: Research Trends and Challenges; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Rao, K.S.; Nikitin, P.V.; Lam, S.F. Antenna design for UHF RFID tags: A review and a practical application. IEEE Trans. Antennas Propag. 2005, 53, 3870–3876. [Google Scholar] [CrossRef]
- Genovesi, S.; Costa, F.; Borgese, M.; Dicandia, F.A.; Monorchio, A.; Manara, G. Chipless RFID sensor for rotation monitoring. In Proceedings of the 2017 IEEE International Conference on RFID Technology Application, Warsaw, Poland, 20–22 September 2017; pp. 233–236. [Google Scholar]
- Costa, F.; Gentile, A.; Genovesi, S.; Buoncristiani, L.; Lazaro, A.; Villarino, R.; Girbau, D. A Depolarizing Chipless RF Label for Dielectric Permittivity Sensing, IEEE Microw. Wirel. Compon. Lett. 2018, 28, 371–373. [Google Scholar] [CrossRef]
- Lazaro, A.; Villarino, R.; Costa, F.; Genovesi, S.; Gentile, A.; Buoncristiani, L.; Girbau, D. Chipless Dielectric Constant Sensor for Structural Health Testing. IEEE Sens. J. 2018, 18, 5576–5585. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.; Genovesi, S.; Monorchio, A. Normalization-Free Chipless RFIDs by Using Dual-Polarized Interrogation. IEEE Trans. Microw. Theory Tech. 2016, 64, 310–318. [Google Scholar] [CrossRef]
- Rezaiesarlak, R.; Manteghi, M. Complex-Natural-Resonance-Based Design of Chipless RFID Tag for High-Density Data. IEEE Trans. Antennas Propag. 2014, 62, 898–904. [Google Scholar] [CrossRef]
- Ramos, A.; Perret, E.; Rance, O.; Tedjini, S.; Lázaro, A.; Girbau, D. Temporal Separation Detection for Chipless Depolarizing Frequency-Coded RFID. IEEE Trans. Microw. Theory Tech. 2016, 64, 2326–2337. [Google Scholar] [CrossRef]
- Plessky, V.P.; Reindl, L.M. Review on SAW RFID tags. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2010, 57, 654–668. [Google Scholar] [CrossRef]
- Vena, A.; Babar, A.A.; Sydänheimo, L.; Tentzeris, M.M.; Ukkonen, L. A Novel Near-Transparent ASK-Reconfigurable Inkjet-Printed Chipless RFID Tag. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 753–756. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjini, S. Chipless RFID Tag Using Hybrid Coding Technique. IEEE Trans. Microw. Theory Tech. 2011, 59, 3356–3364. [Google Scholar] [CrossRef]
- Rance, O.; Siragusa, R.; Lemaitre-Auger, P.; Perret, E. RCS magnitude coding for chipless RFID based on depolarizing tag. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4. [Google Scholar]
- Herrojo, C.; Naqui, J.; Paredes, F.; Martín, F. Spectral signature barcodes implemented by multi-state multi-resonator circuits for chipless RFID tags. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium, San Francisco, CA, USA, 22–25 May 2016; pp. 1–4. [Google Scholar]
- Herrojo, C.; Paredes, F.; Bonache, J.; Martín, F. 3-D-Printed High Data-Density Electromagnetic Encoders Based on Permittivity Contrast for Motion Control and Chipless-RFID. IEEE Trans. Microw. Theory Tech. 2020, 68, 1839–1850. [Google Scholar] [CrossRef]
- Genovesi, S.; Costa, F.; Monorchio, A.; Manara, G. Chipless RFID Tag Exploiting Multifrequency Delta-Phase Quantization Encoding. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 738–741. [Google Scholar] [CrossRef]
- Genovesi, S.; Costa, F.; Dicandia, F.A.; Borgese, M.; Manara, G. Orientation-Insensitive and Normalization-Free Reading Chipless RFID system based on Circular Polarization Interrogation. IEEE Trans. Antennas Propag. 2019, 68, 2370–2378. [Google Scholar] [CrossRef]
- Kracek, J.; Svanda, M.; Hoffmann, K. Scalar Method for Reading of Chipless RFID Tags Based on Limited Ground Plane Backed Dipole Resonator Array. IEEE Trans. Microw. Theory Tech. 2019, 67, 4547–4558. [Google Scholar] [CrossRef]
- Costa, F.; Borgese, M.; Gentile, A.; Buoncristiani, L.; Genovesi, S.; Dicandia, F.A.; Bianchi, D.; Monorchio, A.; Manara, G. Robust Reading Approach for Moving Chipless RFID Tags by Using ISAR Processing. IEEE Trans. Microw. Theory Tech. 2018, 66, 2442–2451. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjni, S. A Depolarizing Chipless RFID Tag for Robust Detection and Its FCC Compliant UWB Reading System. IEEE Trans. Microw. Theory Tech. 2013, 61, 2982–2994. [Google Scholar] [CrossRef]
- Mukherjee, S. Chipless near field resistive element sensor using phase processing. In Proceedings of the 2016 IEEE International Conference on RFID (RFID), Orlando, FL, USA, 3–5 May 2016; pp. 1–5. [Google Scholar]
- Herrojo, C.; Mata-Contreras, J.; Nunez, A.; Paredes, F.; Ramon, E.; Martin, F. Near-Field Chipless-RFID System with High Data Capacity for Security and Authentication Applications. IEEE Trans. Microw. Theory Tech. 2017, 65, 5298–5308. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.P.; Retraint, F.; Morain-Nicolier, F.; Delahaies, A. A Watermarking Technique to Secure Printed Matrix Barcode—Application for Anti-Counterfeit Packaging. IEEE Access. 2019, 7, 131839–131850. [Google Scholar] [CrossRef]
- Miao, J.; Ding, X.; Zhou, S.; Gui, C. Fabrication of Dynamic Holograms on Polymer Surface by Direct Laser Writing for High-Security Anti-Counterfeit Applications. IEEE Access. 2019, 7, 142926–142933. [Google Scholar] [CrossRef]
- Kajfez, D.; Guillon, P. Dielectric Resonators, 2nd ed.; SciTech Publishing, Incorporated: Raleigh, NC, USA, 1998. [Google Scholar]
- Keyrouz, S.; Caratelli, D. Dielectric Resonator Antennas: Basic Concepts, Design Guidelines, and Recent Developments at Millimeter-Wave Frequencies. Int. J. Antennas Propag. 2016, 2016, 1–20. [Google Scholar] [CrossRef]
- Huitema, L.; Monédière, T. Dielectric Material; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Luk, K.M.; Leung, K.W. Dielectric Resonator Antennas; Research Studies Press: Baldock, UK, 2003. [Google Scholar]
- Petosa, A. Dielectric Resonator Antenna Handbook; Artech House: Boston, MA, USA, 2007. [Google Scholar]
- Leung, K.W.; Lim, E.H.; Fang, X.S. Dielectric Resonator Antennas: From the Basic to the Aesthetic. Proc. IEEE 2012, 100, 2181–2193. [Google Scholar] [CrossRef]
- Fang, X.S.; Leung, K.W. Designs of Single-, Dual-, Wide-Band Rectangular Dielectric Resonator Antennas. IEEE Trans. Antennas Propag. 2011, 59, 2409–2414. [Google Scholar] [CrossRef]
- Fang, X.S.; Leung, K.W. Linear-/Circular-Polarization Designs of Dual-/Wide-Band Cylindrical Dielectric Resonator Antennas. IEEE Trans. Antennas Propag. 2012, 60, 2662–2671. [Google Scholar] [CrossRef]
- Long, S.; McAllister, M.; Shen, L. The resonant cylindrical dielectric cavity antenna. IEEE Trans. Antennas Propag. 1983, 31, 406–412. [Google Scholar] [CrossRef]
- Available online: https://ansys.com (accessed on 16 July 2020).
- Available online: https://www.3dwasp.com/power-wasp-evo/ (accessed on 16 July 2020).
- Available online: https://ultimaker.com/software/ultimaker-cura (accessed on 16 July 2020).
- PREPERM® 3D ABS1000 filament 1.75mm 750g. Available online: https://www.preperm.com/webshop/product/preperm-3d-abs-%C9%9Br-10-0-filament-1-75mm/ (accessed on 14 June 2020).
- RS PRO 1.75mm Copper MT-COPPER 3D Printer Filament, 750g. Available online: https://uk.rs-online.com/web/p/3d-printing-materials/1254347/ (accessed on 10 August 2020).
fRes1 | fRes2 | # of Values | # of Bits |
---|---|---|---|
1 | 2 | 49 | 5.61 |
1 | 3 | 84 | 6.39 |
1 | 4 | 102 | 6.67 |
2 | 3 | 73 | 6.19 |
2 | 4 | 90 | 6.49 |
3 | 4 | 105 | 6.71 |
Lower Value | Upper Value | |
---|---|---|
fRES1 | 2058 | 2232 |
fRES2 | 2545 | 2660 |
fRES3 | 3313 | 3542 |
fRES4 | 3811 | 4060 |
fRES1 | fRES2 | fRES3 | fRES4 | #enc Δ = 10 | #bit | #enc Δ = 20 | #bit | #enc Δ = 30 | #bit | #enc Δ = 40 | #bit |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 49 | 5,6 | 17 | 4,1 | 10 | 3,3 | 7 | 2,8 | ||
1 | 3 | 84 | 6,4 | 37 | 5,2 | 22 | 4,5 | 15 | 3,9 | ||
1 | 4 | 102 | 6,7 | 45 | 5,5 | 25 | 4,6 | 17 | 4,1 | ||
2 | 3 | 73 | 6,2 | 32 | 5,0 | 17 | 4,1 | 12 | 3,6 | ||
2 | 4 | 90 | 6,5 | 37 | 5,2 | 20 | 4,3 | 13 | 3,7 | ||
3 | 4 | 105 | 6,7 | 45 | 5,5 | 28 | 4,8 | 19 | 4,2 | ||
1 | 2 | 3 | 117 | 6,9 | 44 | 5,5 | 24 | 4,6 | 14 | 3,8 | |
1 | 2 | 4 | 145 | 7,2 | 61 | 5,9 | 29 | 4,9 | 18 | 4,2 | |
1 | 3 | 4 | 190 | 7,6 | 89 | 6,5 | 51 | 5,7 | 32 | 5,0 | |
2 | 3 | 4 | 177 | 7,5 | 80 | 6,3 | 44 | 5,5 | 27 | 4,8 | |
1 | 2 | 3 | 4 | 197 | 7,6 | 96 | 6,6 | 52 | 5,7 | 33 | 5,0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terranova, S.; Costa, F.; Manara, G.; Genovesi, S. Three-Dimensional Chipless RFID Tags: Fabrication through Additive Manufacturing. Sensors 2020, 20, 4740. https://doi.org/10.3390/s20174740
Terranova S, Costa F, Manara G, Genovesi S. Three-Dimensional Chipless RFID Tags: Fabrication through Additive Manufacturing. Sensors. 2020; 20(17):4740. https://doi.org/10.3390/s20174740
Chicago/Turabian StyleTerranova, Sergio, Filippo Costa, Giuliano Manara, and Simone Genovesi. 2020. "Three-Dimensional Chipless RFID Tags: Fabrication through Additive Manufacturing" Sensors 20, no. 17: 4740. https://doi.org/10.3390/s20174740
APA StyleTerranova, S., Costa, F., Manara, G., & Genovesi, S. (2020). Three-Dimensional Chipless RFID Tags: Fabrication through Additive Manufacturing. Sensors, 20(17), 4740. https://doi.org/10.3390/s20174740