Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification
<p>An overview of our transfer learning method. (<b>a</b>) A labelled source dataset of single-channel sequences <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="script">X</mi> <mi>S</mi> </msub> <mo>,</mo> <msub> <mi mathvariant="script">Y</mi> <mi>S</mi> </msub> <mo>)</mo> </mrow> </semantics></math> is created by collecting segments <math display="inline"><semantics> <msubsup> <mi>x</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </msubsup> </semantics></math> of length <span class="html-italic">L</span> from <span class="html-italic">M</span> datasets and attributing them sensor modality labels <math display="inline"><semantics> <msubsup> <mi>y</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>j</mi> <mo>)</mo> </mrow> </msubsup> </semantics></math>. <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="script">X</mi> <mi>S</mi> </msub> <mo>,</mo> <msub> <mi mathvariant="script">Y</mi> <mi>S</mi> </msub> <mo>)</mo> </mrow> </semantics></math> is then used to train a sDNN that predicts the sensor modality of each segment. (<b>b</b>) A mDNN is built to learn the predictive target function <math display="inline"><semantics> <msub> <mi>f</mi> <mi>T</mi> </msub> </semantics></math>. The weights of the trained sDNN are transferred to the mDNN. The latter is then fine-tuned on the target domain using <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="script">X</mi> <mi>T</mi> </msub> <mo>,</mo> <msub> <mi mathvariant="script">Y</mi> <mi>T</mi> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 2
<p>mDNN used for the learning of <math display="inline"><semantics> <msub> <mi>f</mi> <mi>T</mi> </msub> </semantics></math> on the target domain. The input segments of the target dataset <math display="inline"><semantics> <msub> <mi mathvariant="script">X</mi> <mi>T</mi> </msub> </semantics></math> are sent through a batch normalisation layer. All sensor channels are then separated and processed by <span class="html-italic">S</span> branches with the same number and type of hidden layers as the sDNN trained on the source dataset <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="script">X</mi> <mi>S</mi> </msub> <mo>,</mo> <msub> <mi mathvariant="script">Y</mi> <mi>S</mi> </msub> <mo>)</mo> </mrow> </semantics></math>. The outputs of the <span class="html-italic">S</span> branches are concatenated and sent through fully-connected and softmax layers for classification. The mDNN is fine-tuned using the target dataset <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi mathvariant="script">X</mi> <mi>T</mi> </msub> <mo>,</mo> <msub> <mi mathvariant="script">Y</mi> <mi>T</mi> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 3
<p>Model used on the CogAge dataset. Each of the three mDNNs processes the smartphone (sp), smartwatch (sw) or smartglasses (sg) data. <math display="inline"><semantics> <msub> <mi>L</mi> <mo>*</mo> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>S</mi> <mo>*</mo> </msub> </semantics></math> with <math display="inline"><semantics> <mrow> <mo>∗</mo> <mo>∈</mo> <mo>{</mo> <mi>s</mi> <mi>p</mi> <mo>,</mo> <mi>s</mi> <mi>w</mi> <mo>,</mo> <mi>s</mi> <mi>g</mi> <mo>}</mo> </mrow> </semantics></math> refer to the segment length and number of sensor channels, respectively. Outputs from the three mDNNs are concatenated and fed into fully-connected and softmax layers.</p> "> Figure 4
<p>Flowchart of the three approaches tested on the CogAge dataset: TTO (no transfer), VAE-transfer, and CNN-transfer. The mDNN follows the architecture described in <a href="#sensors-20-04271-f003" class="html-fig">Figure 3</a>.</p> "> Figure 5
<p>Layer differences <math display="inline"><semantics> <msup> <mi>D</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </semantics></math> for all layers of mDNNs trained using TTO and CNN-transfer for BBH classification on the CogAge dataset. Each bar corresponds to a layer and represents its difference between TTO and CNN-transfer. Layer differences are arranged in decreasing order. For each of them, we indicate if it was computed for a layer belonging to a branch processing smartphone, smartwatch, or smartglasses data. Layers not belonging to any branch (e.g., concatenation or fully-connected layers) are categorised as “other”.</p> "> Figure 6
<p>Global channel-wise Jacobian scores <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Ω</mi> <mi>k</mi> </msub> </semantics></math> for mDNNs trained by TTO (red) and CNN-transfer (blue). These scores are computed for BBH on the testing set of the CogAge dataset. <span class="html-italic">sp</span>, <span class="html-italic">sw</span> and <span class="html-italic">sg</span> refer to smartphone, smartwatch, and smartglasses, respectively.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Deep Transfer Learning for Images
2.2. Deep Transfer Learning for Time-Series
2.3. Sensor-Based HAR and ER
3. Methodology Description
- 1.
- Definition of and : is firstly built by considering M multichannel time-series datasets. Every multichannel sequence in the dataset () is decomposed into individual channels, each of which is divided into segments of length L using a sliding window approach. The segments are aggregated to form the source dataset defined in Equation (1):
- 2.
- Learning of : A single-channel DNN (sDNN) is used to learn , as shown in Figure 1a. For the sDNN architecture, a batch normalisation layer used to perform a regularisation on the segments in to address the issue of the heterogeneity of the source data. Assuming the sDNN contains hidden layers, we denote the weight matrix and bias vector of the layer () as and , respectively. Finally, a softmax layer with neurons is added, with each neuron of the layer outputting a value which is an estimation of probability to its corresponding class. This way, the sDNN can classify the segments of using the labels .
- 3.
- Initialisation of a multichannel DNN (mDNN): A mDNN is defined to learn , as shown in Figure 2. It is trained using which contains multichannel segments , with S being the number of channels of the target dataset and which contains associated labels with being the number of classes of the target problem. For the mDNN architecture, a batch normalisation layer is applied to the segments to perform an operation akin to a standard normalisation on the input of the network. The S sensor channels are then separated. The sensor channel () is processed by an ensemble of hidden layers of the same number and type as the hidden layers of the sDNN. We refer to this ensemble of layers as a branch of the mDNN, as depicted in Figure 2. The output of each branch is then concatenated and connected to fully-connected layers. A softmax layer with neurons is then added to output class probabilities for the target classes.
- 4.
- Transfer of weights from the sDNN to the mDNN: The weights and biases of the H hidden layers of the sDNN learned on (not including batch normalisation and softmax layers) are transferred to the branches of the mDNN, as shown in Figure 2. In other words, the layer of the branch (for and ) has its weight and bias matrices and initialised as and , respectively.
- 5.
- Learning of : The mDNN is fined-tuned using to learn , which is the predictive function for the target ubiquitous computing problem.
4. Experiments for Wearable-Based Human Activity Recognition
4.1. Dataset Description
- Google NEXUS 5X smartphone placed in a subject’s front left pocket, providing five different sensor modalities: three-axis accelerometer, gravity sensor, gyroscope, linear accelerometer (all sampled at 200 Hz) and magnetometer (50 Hz).
- Microsoft Band 2 placed on a subject’s left arm, providing two different sensor modalities: three-axis accelerometer and gyroscope (67 Hz).
- JINS MEME glasses placed on the subjects’ head, providing five different sensor modalities: three-axis accelerometer and gyroscope (20 Hz), blink speed, strength measurements, and eye-movement measurements (all discrete signals indicating an event).
4.2. Experimental Setup
- Train on Target Only (TTO): Baseline approach which only trains a mDNN on the target domain, without using transfer learning. The weights of the mDNN are initialised using a Glorot uniform initialisation [9].
- Variational Autoencoder-Transfer (VAE-transfer): Approach which trains a sDNN on the source domain in an unsupervised way. The sDNN to be transferred is considered as the encoder part of a convolutional Variational Autoencoder (VAE) [45]. The encoder of a VAE learns the parameters of a Gaussian probability density characterising a compressed representation of the input in a lower dimensional space called embedding space. A sample is then drawn from such learned Gaussian distribution and sent as input of a decoder—DNN whose structure mirrors the encoder—which is trained to reconstruct the encoder input on its output layer. The ensemble encoder–decoder is trained to reproduce the segments of the source domain as accurately as possible. The weights of the encoder are then transferred to a mDNN. For the CogAge dataset in particular, three VAEs taking input of sizes , and , respectively, are trained and transferred.
4.3. Results
- The results of the state classification problem are relatively uniform across our transfer and the baseline approaches. We attribute this to two factors. Firstly, the state classification problem is significantly simpler than BBH or BLHO because it contains a low number of fairly distinct classes. Secondly, the fairly small size of the testing set which makes a few misclassified examples result in a drop of a few percent(s) in evaluation metrics. With these factors in mind, it can be observed that CNN-transfer, TTO and VAE-transfer all return predictions on the testing set differ only on a few examples.
- For behavioural activity classification, VAE-transfer performs mediocre overall, and ends up yielding results worse than both CNN-transfer and TTO.
- Our transfer approach consistently yields better results than TTO for both BLHO and BBH classification problems. It can be noted that CNN-transfer provides better performances than TTO for all test subjects in the subject-independent configuration.
5. Experiments for Wearable-Based Emotion Recognition
5.1. Dataset Description
5.2. Experimental Setup
5.3. Results
6. Analysis
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J.; Chen, Y.; Hao, H.; Hu, L.; Peng, X. Deep Learning for Sensor-based Activity Recognition: A Survey. Pattern Recognit. Lett. 2018, 119, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Shirahama, K.; Nisar, A.M.; Köping, L.; Grzegorzek, M. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors. Sensors 2018, 18, 679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeiler, M.D.; Fergus, R. Vizualizing and Understanding Convolutional Networks. In Proceedings of the European conference on computer vision, Zurich, Switzerland, 6–12 September 2014; pp. 818–833. [Google Scholar]
- Ordonez, F.J.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, Convolutional and Recurrent Models for Human Activity Recognition using Wearables. arXiv 2016, arXiv:1604.08880. [Google Scholar]
- Li, X.; Zhang, P.; Song, D.; Yu, G.; Hou, Y.; Hu, B. EEG-based Emotion Identification Using Unsupervised Deep Feature Learning. In Proceedings of the NeuroIR, Santiago, Chile, 13 August 2015. [Google Scholar]
- Liu, W.; Zheng, W.L.; Lu, B.L. Multimodal Emotion Recognition Using Multimodal Deep-Learning. In Proceedings of the SIGIR2015 Workshop on Neuro-Physiological Methods in IR Research, Santiago, Chile, 13 August 2015; pp. 521–529. [Google Scholar]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable are Features in Deep Neural Networks? In Proceedings of the NIPS, Montréal, QC, Canada, 8–13 December 2014; Volume 27, pp. 3320–3328. [Google Scholar]
- Huh, M.; Agrawal, P.; Efros, A.A. What Makes ImageNet Good for Transfer Learning? In Proceedings of the CVPR, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep Learning for Time Series Classification: A Review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef] [Green Version]
- Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Transfer Learning for Time-Series Classification. In Proceedings of the IEEE International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018. [Google Scholar]
- Malhotra, P.; TV, V.; Vig, L.; Agarwal, P.; Shroff, G. TimeNet: Pre-trained deep recurrent neural networks for time series classification. In Proceedings of the ESANN, Bruges, Belgium, 26–28 April 2017. [Google Scholar]
- Koelstra, S.; Mühl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the NIPS, Lake Tahoe, CA, USA, 3–8 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the ICLR, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sen, J. Deep Residual Learning for Image Recognition. In Proceedings of the CVPR, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In Proceedings of the ICML, Beijing, China, 22–24 June 2014. [Google Scholar]
- Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. In Proceedings of the ICLR, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the CVPR, Columbus, OH, USA, 24–27 June 2014; pp. 580–587. [Google Scholar]
- Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks. In Proceedings of the CVPR, Columbus, OH, USA, 24–27 June 2014; pp. 1717–1724. [Google Scholar]
- Afridi, M.J.; Ross, A.; Shapiro, E.M. On Automated Source Selection for Transfer Learning in Convolutional Neural Networks. Pattern Recognit. 2018, 73, 65–75. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, H.; Kumar, A.; Grauman, K.; Rosing, T.; Feris, R. SpotTune: Transfer Learning Through Adaptive Fine-Tuning. In Proceedings of the CVPR, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Li, X.; Grandvalet, Y.; Davoine, F. A Baseline Regularisation Scheme for Transfer Learning with Convolutional Neural Networks. Pattern Recognit. 2019, 98, 107049. [Google Scholar] [CrossRef]
- Pathak, D.; Krahenbuhl, P.; Donahue, J.; Efros, A.A. Context Encoders: Feature Learning by Inpainting. In Proceedings of the CVPR, Las Vegas, NV, USA, 26–1 July 2016. [Google Scholar]
- Cook, D.; Feuz, K.D.; Krishnan, N.C. Transfer Learning for Activity Recognition: A Survey. Knowl. Inf. Syst. 2013, 36, 537–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, F.J.O.; Roggen, D. Deep Convolutional Feature Transfer Across Mobile Activity Recognition Domains, Sensor Modalities and Locations. In Proceedings of the ISWC, Kobe, Japan, 17–21 October 2016; pp. 92–99. [Google Scholar]
- Khan, A.H.; Roy, N.; Misra, A. Scaling Human Activity Recognition via Deep Learning-based Domain Adaptation. In Proceedings of the PERCOM, Athens, Greece, 19–23 March 2018. [Google Scholar]
- Wang, J.; Chen, Y.; Hu, L.; Peng, X.; Yu, P.S. Stratified Transfer Learning for Cross-Domain Activity Recognition. In Proceedings of the PERCOM, Athens, Greece, 19–23 March 2018. [Google Scholar]
- Chen, Y.; Keogh, E.; Hu, B.; Begum, N.; Bagnall, A.; Mueen, A.; Batista, G. The UCR Time Series Classification Archive. 2015. Available online: www.cs.ucr.edu/~eamonn/time_series_data/ (accessed on 30 July 2020).
- Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition using Wearable Sensors. IEEE Commun. Surv. Tutor. 2013, 15, 1192–1209. [Google Scholar] [CrossRef]
- Picard, R.W. Affective Computing; The MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Cowie, R.; Douglas-Cowie, E.; Tsapatsoulis, N.; Votsis, G.; Kollias, S.; Fellenz, W.; Taylor, J.G. Emotion Recognition in Human-Computer Interaction. IEEE Signal Process. Mag. 2001, 18, 32–80. [Google Scholar] [CrossRef]
- Grünewald, A.; Krönert, D.; Li, F.; Kampling, H.; Pöhler, J.; Brück, R.; Littau, J.; Schnieber, K.; Piet, A.; Grzegorzek, M.; et al. Biomedical Data Acquisition and Processing to Recognize Emotions for Affective Learning. In Proceedings of the IEEE International Conference on Bioinformatics and Bioengineering, Taichung, Taiwan, 29–31 October 2018. [Google Scholar]
- Rozgic, V.; Vitaladevni, S.V.; Prasad, R. Robust EEG emotion classification using segment level decision fusion. In Proceedings of the ICASSP, Vancouver, BC, Canada, 26–30 May 2013; pp. 1286–1290. [Google Scholar]
- Jirayucharoensak, S.; Pan-Ngum, S.; Israsena, P. EEG-based Emotion Recognition using Deep Learning Network with Principal Component Based Covariate Shift Adaptation. Sci. World J. 2014, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Tang, H.; Zheng, W.L.; Lu, B.L. Emotion Recognition using Multimodal Residual LSTM Network. In Proceedings of the ACMMM, Nice, France, 21–25 October 2019; pp. 176–183. [Google Scholar]
- Smirnov, D.; Nguifo, E.M. Time-series Classification with Recurrent Neural Networks. In Proceedings of the ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Dublin, Ireland, 10–14 September 2018. [Google Scholar]
- Dheeru, D.; Taniskidou, E.K. UCI Machine Learning Repository. 2017. Available online: http://archive.ics.uci.edu/ml (accessed on 30 July 2020).
- Chavarriaga, R.; Sagha, H.; Calatroni, A.; Digumarti, S.; Tröster, G.; Millán, J.D.R.; Roggen, D. The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 2013, 34, 2033–2042. [Google Scholar] [CrossRef] [Green Version]
- Fonollosa, J.; Sheik, S.; Huerta, R.; Marco, S. Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring. Sens. Actuators B Chem. 2015, 215, 618–629. [Google Scholar] [CrossRef]
- Roesler, O. The EEG Eye State Dataset. 2013. Available online: https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State# (accessed on 30 July 2020).
- Candanedo, L.M.; Feldheim, V.; Deramaix, D. Data driven prediction models of energy use of appliances in a low-energy house. Energy Build. 2017, 140, 81–97. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the ICML, Beijing, China, 22–24 June 2014. [Google Scholar]
- Zeiler, M.D. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701. [Google Scholar]
- Li, X.; Song, D.; Zheng, P.; Zheng, Y.; Hou, Y.; Hu, B. Exploring EEG Features in Cross-subject Emotion Recognition. Front. Neurosci. 2019, 12, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.; Li, A.; Chen, C.; Morariu, J.L.V.I.; Han, X.; Gao, M.; Lin, C. NISP: Pruning Networks using Neuron Importance Score Propagation. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9194–9203. [Google Scholar]
- Roffo, G.; Melzi, S.; Cristani, M. Infinite Feature Selection. In Proceedings of the ICCV, Araucano Park, Chile, 11–18 December 2015; pp. 4202–4210. [Google Scholar]
- Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. In Proceedings of the ICLR Workshop, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Gurrin, C.; Smeaton, A.F.; Doherty, A.R. LifeLogging: Personal Big Data. Found. Trends Inf. Retr. 2014, 8, 1–107. [Google Scholar] [CrossRef]
Source Dataset | Sensor Modalities | |
---|---|---|
OPPORTUNITY | · Acceleration (in milli g) | · IMU EU (in degree) |
· IMU magnetometer | · IMU angular velocity (in mm·s) | |
· IMU gyroscope | · IMU compass (in degree) | |
· IMU acceleration (normalised value in milli g) | ||
gas-mixture | · Gas concentration (in ppm) | · Conductance (in k) |
EEG-eye-state | · EEG | |
energy-appliance | · Energy use (in W·h) | · Pressure (in mmHg) |
· Temperature (in C) | · Wind speed (in m·s) | |
· Humidity (in %) | · Visibility (in km) |
State activities | ||
---|---|---|
Standing Sitting Lying Squatting Walking Bending | ||
Behavioral activities | ||
Sit down | Stand up | Lie down |
Get up | Squat down | Stand up from squatting |
Open door * | Close door * | Open drawer * |
Close drawer * | Open small box * | Close small box * |
Open big box | Close big box | Open lid by rotation * |
Close lid by rotation * | Open other lid * | Close other lid * |
Open bag | Take from floor * | Put on floor * |
Bring | Put on high position * | Take from high position * |
Take out * | Eat small thing * | Drink * |
Scoop and put * | Plug in * | Unplug * |
Rotate * | Throw out * | Hang |
Unhang | Wear jacket | Take off jacket |
Read | Write* | Type * |
Talk using telephone * | Touch smartphone screen * | Open tap water * |
Close tap water * | Put from tap water * | Put from bottle * |
Throw out water * | Gargle | Rub hands |
Dry off hands by shake | Dry off hands | Press from top * |
Press by grasp * | Press switch/button * | Clean surface * |
Clean floor |
Dataset | Session #1 | Session #2 |
---|---|---|
State | 260 | 275 |
BLHO | 1692 | 1705 |
BBH | 2284 | 2288 |
Dataset | Subject #1 | Subject #2 | Subject #3 | Subject #4 |
---|---|---|---|---|
State | 165 | 120 | 120 | 130 |
BLHO | 986 | 872 | 718 | 821 |
BBH | 1297 | 1096 | 1078 | 1101 |
Transfer Approach | State | BLHO | BBH | ||||||
---|---|---|---|---|---|---|---|---|---|
Acc. | AF1 | MAP | Acc. | AF1 | MAP | Acc. | AF1 | MAP | |
TTO | 95.91 | 95.94 | 97.63 | 71.95 | 71.72 | 75.03 | 67.94 | 67.65 | 72.00 |
VAE-transfer | 94.78 | 94.77 | 97.93 | 64.44 | 64.09 | 67.37 | 61.31 | 61.04 | 65.18 |
CNN-transfer | 95.94 | 95.94 | 97.62 | 76.44 | 76.07 | 79.09 | 71.85 | 71.41 | 75.14 |
Transfer Approach | Fold Index | State | BLHO | BBH | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Acc. | AF1 | MAP | Acc. | AF1 | MAP | Acc. | AF1 | MAP | ||
TTO | 1 | 87.27 | 86.95 | 93.73 | 33.81 | 32.23 | 31.87 | 29.77 | 26.52 | 29.96 |
2 | 91.67 | 91.57 | 95.19 | 52.47 | 50.37 | 52.32 | 46.45 | 44.01 | 46.24 | |
3 | 95.99 | 94.16 | 95.99 | 34.61 | 30.51 | 33.55 | 30.58 | 28.74 | 32.93 | |
4 | 90.66 | 90.82 | 97.15 | 55.52 | 52.01 | 56.96 | 47.69 | 44.27 | 47.71 | |
Average | 91.40 | 90.88 | 95.52 | 44.10 | 41.28 | 43.68 | 38.62 | 35.89 | 39.21 | |
Standard-deviation | 3.59 | 2.98 | 1.44 | 11.50 | 11.48 | 12.82 | 9.77 | 9.58 | 9.07 | |
VAE-transfer | 1 | 83.58 | 83.13 | 88.13 | 35.02 | 31.62 | 30.35 | 31.74 | 28.61 | 28.02 |
2 | 90.00 | 89.66 | 93.26 | 51.58 | 47.99 | 52.65 | 43.48 | 42.09 | 43.89 | |
3 | 95.00 | 94.95 | 98.59 | 35.18 | 32.06 | 36.84 | 29.01 | 28.54 | 31.51 | |
4 | 82.58 | 76.35 | 93.79 | 54.43 | 50.03 | 52.54 | 48.23 | 43.61 | 46.38 | |
Average | 87.79 | 86.02 | 93.45 | 44.05 | 40.43 | 43.10 | 38.12 | 35.71 | 37.45 | |
Standard-deviation | 5.82 | 8.06 | 4.28 | 10.40 | 9.95 | 11.29 | 9.21 | 8.27 | 9.04 | |
CNN-transfer | 1 | 88.21 | 87.56 | 92.40 | 36.33 | 33.99 | 35.39 | 33.57 | 30.05 | 31.07 |
2 | 84.17 | 83.89 | 92.58 | 52.98 | 49.34 | 53.92 | 47.23 | 45.33 | 51.15 | |
3 | 98.33 | 98.33 | 98.01 | 38.28 | 33.66 | 40.66 | 32.94 | 32.52 | 36.03 | |
4 | 91.52 | 91.56 | 96.60 | 58.85 | 55.40 | 62.04 | 50.19 | 46.60 | 53.86 | |
Average | 90.56 | 90.34 | 94.90 | 49.39 | 43.10 | 48.00 | 40.98 | 38.63 | 43.03 | |
Standard-deviation | 5.99 | 6.18 | 2.84 | 11.68 | 10.99 | 12.18 | 9.01 | 8.55 | 11.18 |
Approach | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
Bi-modal AE [7] | - | - | - | - | - | - | - | - | - | - | 80.50 |
TTO | 89.26 | 88.13 | 87.55 | 87.69 | 88.13 | 88.05 | 88.64 | 88.75 | 87.59 | 87.91 | 88.17 |
VAE-transfer | 83.22 | 84.87 | 84.93 | 85.04 | 83.74 | 84.86 | 84.71 | 84.55 | 85.12 | 83.93 | 84.50 |
CNN-transfer | 90.89 | 91.60 | 91.18 | 91.46 | 91.37 | 91.53 | 90.79 | 91.59 | 91.64 | 90.80 | 91.29 |
Approach | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
Bi-modal AE [7] | - | - | - | - | - | - | - | - | - | - | 85.20 |
TTO | 87.67 | 87.03 | 87.85 | 86.93 | 87.26 | 87.44 | 88.03 | 87.08 | 87.75 | 87.25 | 87.43 |
VAE-transfer | 85.17 | 84.86 | 83.92 | 85.48 | 84.75 | 84.06 | 84.23 | 85.42 | 84.90 | 84.69 | 84.75 |
CNN-transfer | 90.89 | 91.12 | 90.22 | 90.39 | 90.51 | 90.27 | 90.71 | 90.39 | 91.08 | 90.84 | 90.64 |
Transfer Approach | Training Target Data Proportion (%) | State | BLHO | BBH | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Acc. | AF1 | MAP | Acc. | AF1 | MAP | Acc. | AF1 | MAP | ||
TTO | 5 | 66.56 | 61.51 | 68.70 | 19.05 | 16.24 | 16.62 | 19.86 | 15.31 | 15.82 |
25 | 88.78 | 88.92 | 94.16 | 51.98 | 51.23 | 50.90 | 50.83 | 50.21 | 52.67 | |
50 | 93.78 | 93.67 | 96.88 | 60.89 | 60.74 | 62.07 | 58.90 | 58.39 | 61.99 | |
75 | 95.14 | 95.18 | 97.73 | 71.11 | 71.24 | 73.18 | 62.78 | 62.70 | 65.99 | |
100 | 95.91 | 95.94 | 97.63 | 71.95 | 71.72 | 75.03 | 67.94 | 67.65 | 72.00 | |
VAE transfer | 5 | 59.79 | 57.44 | 64.55 | 19.05 | 14.88 | 17.43 | 15.11 | 13.03 | 13.49 |
25 | 89.14 | 88.92 | 91.42 | 39.20 | 37.34 | 38.53 | 32.92 | 32.46 | 33.00 | |
50 | 89.09 | 89.05 | 95.69 | 51.91 | 51.52 | 52.79 | 47.52 | 47.36 | 49.18 | |
75 | 94.84 | 94.81 | 97.91 | 61.45 | 60.58 | 62.35 | 51.29 | 50.60 | 53.90 | |
100 | 94.78 | 94.77 | 97.93 | 64.44 | 64.09 | 67.37 | 61.31 | 61.04 | 65.18 | |
CNN transfer | 5 | 67.64 | 67.70 | 73.74 | 23.39 | 18.10 | 20.41 | 25.92 | 22.05 | 24.13 |
25 | 90.47 | 90.61 | 94.12 | 55.89 | 55.46 | 56.97 | 56.95 | 55.65 | 57.51 | |
50 | 94.60 | 94.47 | 97.73 | 66.66 | 66.01 | 68.59 | 62.83 | 62.22 | 66.22 | |
75 | 95.88 | 95.87 | 97.11 | 73.06 | 72.47 | 74.99 | 66.29 | 66.29 | 69.95 | |
100 | 95.94 | 95.94 | 97.62 | 76.44 | 76.07 | 79.09 | 71.85 | 71.41 | 75.14 |
Transfer Approach | Training Target Data Proportion (%) | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TTO | 5 | 64.11 | 64.81 | 64.00 | 63.64 | 63.81 | 65.49 | 65.74 | 67.44 | 64.62 | 64.61 | 64.83 |
25 | 78.47 | 76.28 | 76.08 | 76.66 | 76.75 | 77.53 | 74.91 | 76.92 | 77.80 | 76.23 | 76.76 | |
50 | 82.08 | 81.56 | 82.29 | 84.34 | 82.03 | 83.94 | 82.68 | 82.42 | 82.90 | 83.16 | 82.74 | |
75 | 85.88 | 87.49 | 87.25 | 85.16 | 87.05 | 85.13 | 85.59 | 86.22 | 86.86 | 85.88 | 86.25 | |
100 | 89.26 | 88.13 | 87.55 | 87.69 | 88.13 | 88.05 | 88.64 | 88.75 | 87.59 | 87.91 | 88.17 | |
VAE transfer | 5 | 63.52 | 64.26 | 64.20 | 65.80 | 64.83 | 64.24 | 64.42 | 64.91 | 64.04 | 63.70 | 63.70 |
25 | 74.12 | 74.79 | 74.59 | 74.78 | 74.45 | 74.63 | 73.76 | 74.49 | 74.09 | 73.67 | 74.34 | |
50 | 78.99 | 79.92 | 80.31 | 80.05 | 79.50 | 80.25 | 79.49 | 79.34 | 79.77 | 79.12 | 79.67 | |
75 | 82.14 | 83.07 | 82.56 | 83.12 | 82.54 | 82.13 | 82.48 | 82.69 | 82.19 | 82.25 | 82.52 | |
100 | 83.22 | 84.87 | 84.93 | 85.04 | 83.74 | 84.86 | 84.71 | 84.55 | 85.12 | 83.93 | 84.50 | |
CNN transfer | 5 | 65.66 | 65.58 | 65.91 | 66.64 | 65.71 | 65.45 | 66.94 | 65.31 | 66.90 | 66.48 | 66.06 |
25 | 79.86 | 80.47 | 79.97 | 80.34 | 79.59 | 78.91 | 79.58 | 80.05 | 80.39 | 80.18 | 79.93 | |
50 | 86.79 | 86.95 | 86.32 | 86.77 | 86.48 | 87.54 | 86.41 | 86.58 | 86.78 | 86.76 | 86.74 | |
75 | 89.37 | 89.66 | 89.46 | 90.60 | 89.72 | 89.74 | 89.12 | 89.55 | 89.66 | 88.81 | 89.57 | |
100 | 90.89 | 91.60 | 91.18 | 91.46 | 91.37 | 91.53 | 90.79 | 91.59 | 91.64 | 90.80 | 91.29 |
Transfer Approach | Training Target Data Proportion (%) | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TTO | 5 | 64.27 | 64.36 | 64.29 | 62.71 | 63.86 | 63.50 | 63.08 | 65.17 | 63.76 | 62.79 | 63.78 |
25 | 77.78 | 75.60 | 76.33 | 76.23 | 76.26 | 74.88 | 75.93 | 76.12 | 76.44 | 76.07 | 76.16 | |
50 | 82.49 | 81.78 | 81.89 | 81.88 | 81.63 | 82.61 | 81.36 | 81.87 | 82.76 | 83.21 | 82.15 | |
75 | 85.42 | 85.97 | 84.76 | 85.64 | 85.21 | 85.62 | 84.92 | 86.21 | 85.13 | 86.04 | 85.49 | |
100 | 87.67 | 87.03 | 87.85 | 86.93 | 87.26 | 87.44 | 88.03 | 87.08 | 87.75 | 87.25 | 87.43 | |
VAE transfer | 5 | 64.11 | 64.43 | 63.29 | 65.05 | 64.55 | 65.22 | 64.14 | 65.35 | 64.72 | 65.38 | 64.62 |
25 | 74.67 | 73.57 | 74.31 | 74.70 | 73.26 | 74.32 | 74.52 | 74.02 | 74.48 | 74.18 | 74.20 | |
50 | 80.41 | 80.11 | 79.94 | 80.49 | 80.13 | 80.11 | 80.12 | 80.53 | 81.05 | 79.33 | 80.22 | |
75 | 83.79 | 82.68 | 82.73 | 83.95 | 83.33 | 82.68 | 82.78 | 82.85 | 83.41 | 82.96 | 83.12 | |
100 | 85.17 | 84.86 | 83.92 | 85.48 | 84.75 | 84.06 | 84.23 | 85.42 | 84.90 | 82.96 | 83.12 | |
CNN transfer | 5 | 65.31 | 64.94 | 65.48 | 64.16 | 63.96 | 64.19 | 65.45 | 65.25 | 65.43 | 65.15 | 64.93 |
25 | 80.27 | 79.91 | 78.81 | 79.01 | 79.50 | 80.01 | 79.32 | 81.47 | 79.45 | 80.38 | 79.81 | |
50 | 86.44 | 86.37 | 85.60 | 86.77 | 85.16 | 85.71 | 85.54 | 85.68 | 86.74 | 86.71 | 86.07 | |
75 | 88.86 | 89.43 | 89.09 | 88.98 | 89.35 | 88.75 | 89.01 | 89.53 | 88.85 | 89.45 | 89.13 | |
100 | 90.89 | 91.12 | 90.22 | 90.39 | 90.51 | 90.27 | 90.71 | 90.39 | 91.08 | 90.84 | 90.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Shirahama, K.; Nisar, M.A.; Huang, X.; Grzegorzek, M. Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification. Sensors 2020, 20, 4271. https://doi.org/10.3390/s20154271
Li F, Shirahama K, Nisar MA, Huang X, Grzegorzek M. Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification. Sensors. 2020; 20(15):4271. https://doi.org/10.3390/s20154271
Chicago/Turabian StyleLi, Frédéric, Kimiaki Shirahama, Muhammad Adeel Nisar, Xinyu Huang, and Marcin Grzegorzek. 2020. "Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification" Sensors 20, no. 15: 4271. https://doi.org/10.3390/s20154271
APA StyleLi, F., Shirahama, K., Nisar, M. A., Huang, X., & Grzegorzek, M. (2020). Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification. Sensors, 20(15), 4271. https://doi.org/10.3390/s20154271