Body Condition Score Estimation Based on Regression Analysis Using a 3D Camera
<p>(<b>a</b>) Position of 3D camera; (<b>b</b>) image of cows in rotary parlor.</p> "> Figure 2
<p>Cow region extraction from 3D camera. (<b>a</b>) Original image in rotary parlor from 3D camera; (<b>b</b>) Cow region extraction by distance information.</p> "> Figure 3
<p>The processed cow image. (<b>a</b>) Distance image of cow (color expresses the distance); (<b>b</b>) The cow image in 3D space.</p> "> Figure 4
<p>Sample discarded and filtered images. (<b>a</b>) Sample of discarded images; (<b>b</b>) Image selection by symmetricity.</p> "> Figure 5
<p>Detailed workflow for automatic image selection.</p> "> Figure 6
<p>Images composed of cross-sectional slices for ROI 1 used in BCS estimation model 1.</p> "> Figure 7
<p>Image composed of cross-sectional slices for ROI 2 used in BCS estimation model 2.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Data Collection and Preprocessing
4. Automatic Image Selection Process by Filtering
5. Proposed BCS Modeling
5.1. BCS Estimation Model 1
- Arithmetic mean height (A1);
- Convex hull volume (A2);
- Difference between convex hull volume and 3D volume (A3);
- Difference between peak height and valley depth in fifteen maximums and minimums for all profiles (A4).
5.2. BCS Estimation Model 2
- Arithmetic mean height (B1);
- Difference between peak height and valley depth (B2).
6. Performance Evaluation
7. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kellogg, W. Body Condition Scoring with Dairy Cattle. Available online: https://www.uaex.edu/publications/pdf/FSA-4008.pdf (accessed on 2 April 2020).
- Gearhart, M.A.; Curtis, C.R.; Erb, H.N.; Smith, R.D.; Snien, C.J.; Chase, L.E.; Cooper, M.D. Relationship of changes in condition score to cow health in Holsteins. J. Dairy Sci. 1990, 73, 3132–3140. [Google Scholar] [CrossRef]
- Roche, J.R.; Meier, S.; Heiser, A.; Mitchell, M.D.; Walker, C.G.; Crookenden, M.A.; Riboni, M.V.; Loor, J.J.; Kay, J.K. Effects of precalving body condition score and prepartum feeding level on production, reproduction, and health parameters in pasture-based transition dairy cows. J. Dairy Sci. 2015, 98, 7164–7182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrichs, A.J. Body-Condition Scoring as a Tool for Dairy Herd Management; Cooperative Extension, College of Agriculture, Pennsylvania State University: University Park, PA, USA, 1980; Volume 363. [Google Scholar]
- Rossi, J.; Wilson, T.W. Body Condition Scoring Beef Cows. Available online: https://secure.caes.uga.edu/extension/publications/files/pdf/B%201308_3.PDF (accessed on 23 April 2020).
- Bewley, J.M.; Peacock, A.M.; Lewis, O.; Boyce, R.E.; Roberts, D.J.; Coffey, M.P.; Kenyon, S.J.; Schutz, M.M. Potential for Estimation of Body Condition Scores in Dairy Cattle from Digital Images. J. Dairy Sci. 2008, 91, 3439–3453. [Google Scholar] [CrossRef] [PubMed]
- Alapati, A.; Kapa, S.R.; Jeepalyam, S.; Rangappa, S.M.P.; Yemireddy, K.R. Development of the body condition score system in Murrah buffaloes: Validation through ultrasonic assessment of body fat reserves. J. Dairy Sci. 2010, 11, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Spoliansky, R.; Edan, Y.; Parmet, Y.; Halachmi, I. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. J. Dairy Sci. 2016, 99, 7714–7725. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Bokkers, E.A.M.; van Mourik, S.; Koerkamp, P.G.; van der Tol, P.P.J. Automated body condition scoring of dairy cows using 3-dimensional feature extraction from multiple body regions. J. Dairy Sci. 2019, 102, 4294–4308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamura, S.; Zin, T.T.; Kobayashi, I.; Horii, Y. Automatic evaluation of cow’s body-condition-score using 3D camera. In Proceedings of the 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, Japan, 24–27 October 2017; pp. 1–2. [Google Scholar]
- Krukowski, M. Automatic Determination of Body Condition Score of Dairy Cows from 3D Images. Available online: https://pdfs.semanticscholar.org/a9e1/bddb0fdc862859b90d03e20b34d4cfdf4b93.pdf (accessed on 23 April 2020).
- Zin, T.T.; Seint, P.T.; Tin, P.; Horii, Y. The Body Condition Score Indicators for Dairy Cows Using 3D Camera. In Proceedings of the International Workshop on Frontiers of Computer Vision (IW-FCV), Ibusuki, Japan, 20–22 February 2020; pp. 1–8. [Google Scholar]
- Hansen, M.F.; Smith, M.L.; Smith, L.N.; Jabbar, K.A.; Forbes, D. Automated monitoring of dairy cow body condition, mobility and weight using a single 3D video capture device. Comput. Ind. 2018, 98, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Polyhedron. Available online: https://en.wikipedia.org/wiki/Polyhedron (accessed on 20 April 2020).
Body Condition Score (BCS) | 2.5 | 2.75 | 3 | 3.25 | 3.5 | 3.75 | 4 |
No. of Cows | 1 | 1 | 6 | 24 | 14 | 5 | 1 |
Training with Two Proposed Methods by Regression Analysis | Testing with Two Proposed Methods by Regression Analysis | ||||||
---|---|---|---|---|---|---|---|
Cow No. | BCS by Experts | BCS by Proposed Method (Model 1) | BCS by Proposed Method (Model 2) | Cow No. | BCS by Experts | BCS by Proposed Method (Model 1) | BCS by Proposed Method (Model 2) |
1 | 3 | 3.39 | 3.32 | 1 | 3 | 3.29 | 3.27 |
2 | 3.5 | 3.31 | 3.35 | 2 | 3.25 | 3.34 | 3.35 |
3 | 3.25 | 3.35 | 3.64 | 3 | 3.25 | 3.14 | 3.29 |
4 | 3.25 | 3.28 | 3.56 | 4 | 3.25 | 3.39 | 3.28 |
5 | 3.25 | 3.29 | 3.30 | 5 | 3.25 | 2.79 | 3.36 |
6 | 3.25 | 3.54 | 3.29 | 6 | 3.5 | 3.47 | 3.53 |
7 | 3 | 3.21 | 3.12 | 7 | 3.25 | 3.40 | 3.24 |
8 | 3.25 | 3.20 | 3.07 | 8 | 3.5 | 3.77 | 3.36 |
9 | 3 | 3.09 | 3.34 | 9 | 3.5 | 3.40 | 3.43 |
10 | 3.25 | 3.10 | 3.29 | 10 | 3.5 | 3.37 | 3.31 |
11 | 3.5 | 3.52 | 3.42 | 11 | 3.25 | 3.28 | 3.25 |
12 | 3.5 | 3.18 | 3.06 | 12 | 3.5 | 3.34 | 3.18 |
13 | 3.5 | 3.59 | 3.28 | 13 | 3.25 | 3.44 | 3.28 |
14 | 3.25 | 3.10 | 3.17 | 14 | 3.5 | 3.27 | 3.50 |
15 | 3.25 | 3.48 | 3.21 | 15 | 3.75 | 3.59 | 3.20 |
16 | 3.5 | 3.38 | 3.51 | 16 | 3.75 | 3.52 | 3.53 |
17 | 3.25 | 3.05 | 3.12 | 17 | 3.25 | 3.25 | 3.21 |
18 | 3.75 | 3.73 | 3.53 | 18 | 3 | 3.04 | 3.16 |
19 | 3.25 | 3.29 | 3.30 | 19 | 3.25 | 3.41 | 3.43 |
20 | 3.25 | 3.20 | 3.40 | 20 | 3.25 | 3.08 | 3.38 |
21 | 3.25 | 3.40 | 3.26 | ||||
22 | 3.5 | 3.45 | 3.32 | ||||
23 | 3.5 | 3.48 | 3.18 | ||||
24 | 3.25 | 3.30 | 3.37 | ||||
25 | 3.75 | 3.67 | 3.67 | ||||
26 | 3.25 | 3.11 | 3.25 | ||||
27 | 2.5 | 2.62 | 2.89 | ||||
28 | 3.5 | 3.32 | 3.27 | ||||
29 | 2.75 | 2.88 | 3.21 | ||||
30 | 3.75 | 3.41 | 3.41 | ||||
31 | 4 | 3.81 | 3.61 | ||||
32 | 3 | 3.28 | 3.26 |
BCS Model | Training | Testing | ||
---|---|---|---|---|
MAE | MAPE | MAE | MAPE | |
Model 1 (M1) | 0.14 | 4.31% | 0.15 | 4.64% |
Model 2 (M2) | 0.19 | 5.89% | 0.13 | 3.87% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zin, T.T.; Seint, P.T.; Tin, P.; Horii, Y.; Kobayashi, I. Body Condition Score Estimation Based on Regression Analysis Using a 3D Camera. Sensors 2020, 20, 3705. https://doi.org/10.3390/s20133705
Zin TT, Seint PT, Tin P, Horii Y, Kobayashi I. Body Condition Score Estimation Based on Regression Analysis Using a 3D Camera. Sensors. 2020; 20(13):3705. https://doi.org/10.3390/s20133705
Chicago/Turabian StyleZin, Thi Thi, Pann Thinzar Seint, Pyke Tin, Yoichiro Horii, and Ikuo Kobayashi. 2020. "Body Condition Score Estimation Based on Regression Analysis Using a 3D Camera" Sensors 20, no. 13: 3705. https://doi.org/10.3390/s20133705
APA StyleZin, T. T., Seint, P. T., Tin, P., Horii, Y., & Kobayashi, I. (2020). Body Condition Score Estimation Based on Regression Analysis Using a 3D Camera. Sensors, 20(13), 3705. https://doi.org/10.3390/s20133705