Real-Time Identification of Irrigation Water Pollution Sources and Pathways with a Wireless Sensor Network and Blockchain Framework
<p>Flowchart of the data uploading process for the identification of pollution events and potential sources. Note: Directed Acyclic Graph (DAG); Geographic Information System (GIS); Water Quality Analysis Simulation System (WASP).</p> "> Figure 2
<p>(<b>a</b>) framework of the monitoring system; (<b>b</b>) blockchain platform; (<b>c</b>) GIS platform.</p> "> Figure 3
<p>Taoyuan irrigation district study area. Note: Blue boxes represent regular water monitoring stations, and orange boxes represent heavy metal monitoring stations.</p> "> Figure 4
<p>The upstream-downstream relationship between monitoring stations as a Directed Acyclic Graph (DAG) with the corresponding topological sort order (<b>a</b>) stream system, (<b>b</b>) DAG, (<b>c</b>) Sort.</p> "> Figure 5
<p>Example of the blockchain transaction record of pollution coins.</p> "> Figure 6
<p>Spatial distributions and irrigation flow with monitoring stations in the study area. Note: R is a regular water monitoring station; M is a heavy metal monitoring station.</p> "> Figure 7
<p>Procedure trees for four monitoring stations with detected EC and Cu concentrations exceeding the regulation standard. Note: Similar data for the remaining six scenarios are not shown. (<b>a</b>) Case 1 (Type I); (<b>b</b>) Case 3 (Type II); (<b>c</b>) Case 4 (Type III); (<b>d</b>) Case 5 (Type IV). Red circles represent Electrical Conductivity (EC); Brown is Copper (Cu<sup>2+</sup>); R is a regular water monitoring station; M is a heavy metal monitoring station; the Date of the transaction is indicated in the outlined box as day–month–year.</p> "> Figure 8
<p>Pollution pathways of upstream and downstream irrigation units for (<b>a</b>) Case 1 (Type I); (<b>b</b>) Case 3 (Type I); (<b>c</b>) Case 4 (Type II); (<b>d</b>) Case 5 (Type III); (<b>e</b>) Case 6 (Type IV); (<b>f</b>) Case 8 (Type V). Note: Red is the polluted upstream irrigation unit; R is the regular water monitoring station; M is the heavy metal monitoring station.</p> "> Figure 9
<p>Reverse prediction of EC concentrations along the channel for each case at heavy metal monitoring station M02 (<b>a</b>) 5080 µmho/cm; (<b>b</b>) 5746 µmho/cm; (<b>c</b>) 5560 µmho/cm; (<b>d</b>) 4610 µmho/cm.</p> "> Figure 10
<p>Reverse prediction of Cu<sup>2+</sup> concentrations along the channel for each case at heavy metal monitoring station M02 (<b>a</b>) 0.358 ppm, (<b>b</b>) 0.595 ppm, (<b>c</b>) 0.482 ppm, (<b>d</b>) 0.429 ppm, (<b>e</b>) 0.299 ppm, (<b>f</b>) 0.271 ppm, (<b>g</b>) 0.209 ppm, (<b>h</b>) 0.226 ppm, (<b>i</b>) 0.393 ppm, and (<b>j</b>) 0.316 ppm.</p> "> Figure 10 Cont.
<p>Reverse prediction of Cu<sup>2+</sup> concentrations along the channel for each case at heavy metal monitoring station M02 (<b>a</b>) 0.358 ppm, (<b>b</b>) 0.595 ppm, (<b>c</b>) 0.482 ppm, (<b>d</b>) 0.429 ppm, (<b>e</b>) 0.299 ppm, (<b>f</b>) 0.271 ppm, (<b>g</b>) 0.209 ppm, (<b>h</b>) 0.226 ppm, (<b>i</b>) 0.393 ppm, and (<b>j</b>) 0.316 ppm.</p> "> Figure 11
<p>Big O notation analysis of the relationship in the number of Blockchain transactions and the number of polluted stations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experiment Design
2.2. Structure of the Blockchain Traceability System Used in This Study
2.2.1. Uploading Water Quality Data to the Blockchain Traceability System
2.2.2. Extracting Information from the Blockchain Traceability System
2.3. Tracking Pollution Sources with GIS
2.4. Simulation of Wastewater Discharge Quality
2.5. Computational Complexity
Algorithm1: Pollution Analysis Algorithm. |
Pollution Analysis |
{ Identify the collection address of the time point //step 1 |
Sc = set of all pollution coins; |
For each c ∈ Sc {//step2 & step 3 |
Generate pollution pathway Pc for c’s transition record. |
Analyze Pc to determine which is the pollution source |
//the pollution source is at the upstream of the sources in Pc, |
// the other is pollution path. |
} |
} |
3. Results
3.1. Uploading Water Quality Data to the Blockchain Traceability System
3.2. Mapping Industrial Factories Identified as Likely Pollution Sources with GIS
3.3. Simulation of Wastewater Discharge Quality
3.4. Computational Complexity
4. Discussion
4.1. Uploading Water Quality Data to the Blockchain Traceability System
4.2. Mapping Industrial Factories Identified as Likely Pollution Sources with GIS
4.3. Simulation of Water Quality for Real-Time Pollution Source Tracking
4.4. Computational Complexity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, Y.-P.; Lin, W.-C.; Li, M.-Y.; Chen, Y.-Y.; Chiang, L.-C.; Wang, Y.-C. Identification of spatial distributions and uncertainties of multiple heavy metal concentrations by using spatial conditioned Latin Hypercube sampling. Geoderma 2014, 230, 9–21. [Google Scholar] [CrossRef]
- Lin, Y.; Ding, W.; Liu, D.; He, T.; Yoo, G.; Yuan, J.; Chen, Z.; Fan, J. Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria. Soil Biol. Biochem. 2017, 113, 89–98. [Google Scholar] [CrossRef]
- Saha, N.; Rahman, M.S.; Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Industrial metal pollution in water and probabilistic assessment of human health risk. J. Environ. Manag. 2017, 185, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xie, Z.; Li, F. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale. Environ. Pollut. 2015, 206, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, Y.; Wang, T.; Wang, P.; Li, Q.; Johnson, A.C.; Sarvajayakesavalu, S.; Sweetman, A.J. Risk assessment and source identification of perfluoroalkyl acids in surface and ground water: Spatial distribution around a mega-fluorochemical industrial park, China. Environ. Int. 2016, 91, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-P.; Chang, T.-K.; Fan, C.; Anthony, J.; Petway, J.; Lien, W.-Y.; Liang, C.-P.; Ho, Y.-F. Applications of information and communication technology for improvements of water and soil monitoring and assessments in agricultural areas—A case study in the taoyuan irrigation district. Environments 2017, 4, 6. [Google Scholar] [CrossRef]
- Ellis, J.B.; Butler, D. Surface water sewer misconnections in England and Wales: Pollution sources and impacts. Sci. Total Environ. 2015, 526, 98–109. [Google Scholar] [CrossRef]
- Meyer, A.M.; Klein, C.; Fünfrocken, E.; Kautenburger, R.; Beck, H.P. Real-time monitoring of water quality to identify pollution pathways in small and middle scale rivers. Sci. Total Environ. 2019, 651, 2323–2333. [Google Scholar] [CrossRef]
- Wang, H.; Song, Y. Secure cloud-based EHR system using attribute-based cryptosystem and blockchain. J. Med. Syst. 2018, 42, 152. [Google Scholar] [CrossRef]
- Dwivedi, A.D.; Srivastava, G.; Dhar, S.; Singh, R. A decentralized privacy-preserving healthcare blockchain for iot. Sensors 2019, 19, 326. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; He, J.; Ding, Y. Medical Data Management on Blockchain with Privacy. J. Med. Syst. 2019, 43, 26. [Google Scholar] [CrossRef] [PubMed]
- Caro, M.P.; Ali, M.S.; Vecchio, M.; Giaffreda, R. Blockchain-based traceability in Agri-Food supply chain management: A practical implementation. In Proceedings of the 2018 IoT Vertical and Topical Summit on Agriculture-Tuscany (IOT Tuscany), Tuscany, Italy, 8–9 May 2018; pp. 1–4. [Google Scholar]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain technology and its relationships to sustainable supply chain management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-P.; Petway, J.; Lien, W.-Y.; Settele, J. Blockchain with artificial intelligence to efficiently manage water use under climate change. Environments 2018, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- França, A.S.L.; Neto, J.A.; Gonçalves, R.F.; Almeida, C. Proposing the use of blockchain to improve the solid waste management in small municipalities. J. Clean. Prod. 2020, 244, 118529. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Petway, R.J.; Anthony, J.; Mukhtar, H.; Liao, S.-W.; Chou, C.-F.; Ho, Y.-F. Blockchain: The Evolutionary Next Step for ICT E-Agriculture. Environments 2017, 4, 50. [Google Scholar] [CrossRef]
- Polyzos, G.C.; Fotiou, N. Blockchain-assisted information distribution for the Internet of Things. In Proceedings of the 2017 IEEE International Conference on Information Reuse and Integration (IRI), San Diego, CA, USA, 4–6 August 2017; pp. 75–78. [Google Scholar]
- Leng, J.; Jiang, P.; Xu, K.; Liu, Q.; Zhao, J.L.; Bian, Y.; Shi, R. Makerchain: A blockchain with chemical signature for self-organizing process in social manufacturing. J. Clean. Prod. 2019, 234, 767–778. [Google Scholar] [CrossRef]
- George, R.V.; Harsh, H.O.; Ray, P.; Babu, A.K. Food quality traceability prototype for restaurants using blockchain and food quality data index. J. Clean. Prod. 2019, 240, 118021. [Google Scholar] [CrossRef]
- Feng, H.; Wang, X.; Duan, Y.; Zhang, J.; Zhang, X. Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges. J. Clean. Prod. 2020, 121031. [Google Scholar] [CrossRef]
- Kshetri, N. Can blockchain strengthen the internet of things? IT Prof. 2017, 19, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Karimi, N.; Arabhosseini, A.; Karimi, M.; Kianmehr, M.H. Web-Based monitoring system using Wireless Sensor Networks for traditional vineyards and grape drying buildings. Comput. Electron. Agric. 2018, 144, 269–283. [Google Scholar] [CrossRef]
- Işık, M.; Sönmez, Y.; Yılmaz, C.; Özdemir, V.; Yılmaz, E. Precision irrigation system (PIS) using sensor network technology integrated with IOS/Android application. Appl. Sci. 2017, 7, 891. [Google Scholar] [CrossRef] [Green Version]
- Serra, P.; Salvati, L.; Queralt, E.; Pin, C.; Gonzalez, O.; Pons, X. Estimating Water Consumption and Irrigation Requirements in a Long-Established Mediterranean Rural Community by Remote Sensing and Field Data. Irrig. Drain. 2016, 65, 578–588. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Yuan, X.; Zeng, G.; Yuan, Y.; Wu, H.; Li, F. A method for heavy metal exposure risk assessment to migratory herbivorous birds and identification of priority pollutants/areas in wetlands. Environ. Sci. Pollut. Res. 2016, 23, 11806–11813. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.; Klise, K.A.; Siirola, J.D.; Haxton, T.; Laird, C.D. Testing contamination source identification methods for water distribution networks. J. Water Resour. Plan. Manag. 2016, 142, 4016001. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Singh, A. Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques. Ecol. Indic. 2018, 89, 584–589. [Google Scholar] [CrossRef]
- Xing, Y.; Si, Y.-X.; Hong, C.; Li, Y. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil. Arch. Environ. Contam. Toxicol. 2015, 69, 20–31. [Google Scholar] [CrossRef]
- Lin, W.-C.; Lin, Y.-P.; Wang, Y.-C. A decision-making approach for delineating sites which are potentially contaminated by heavy metals via joint simulation. Environ. Pollut. 2016, 211, 98–110. [Google Scholar] [CrossRef]
- Qu, L.; Huang, H.; Xia, F.; Liu, Y.; Dahlgren, R.A.; Zhang, M.; Mei, K. Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ. Pollut. 2018, 237, 639–649. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Fang, P. Accident Trend Prediction of Heavy Metal Pollution in the Heshangshan Drinking Water Source Area Based on Integrating a Two-Dimensional Water Quality Model and GIS. Sustainability 2019, 11, 3998. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.E.; Chen, C.T.; Kao, C.M.; Hong, A.; Wu, C.Y. Development of the sediment and water quality management strategies for the Salt-water River, Taiwan. Mar. Pollut. Bull. 2011, 63, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Rifai, H.S.; Lakshmanan, D.; Suarez, M.P. Mass balance modeling to elucidate historical and continuing sources of dioxin into an urban estuary. Chemosphere 2013, 93, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Mbuh, M.J.; Mbih, R.; Wendi, C. Water quality modeling and sensitivity analysis using Water Quality Analysis Simulation Program (WASP) in the Shenandoah River watershed. Phys. Geogr. 2019, 40, 127–148. [Google Scholar] [CrossRef]
- Wool, T.A.; Ambrose, R.B.; Martin, J.L.; Comer, E.A. Water quality analysis simulation program (WASP) version 6.0 draft: User’s manual. US Environ. Prot. Agency-Region 2001, 4. [Google Scholar]
- Gcoin White Paper English. Available online: https://github.com/blockchain-foundry/gcoin-community/wiki/Gcoin-white-paper-English (accessed on 28 June 2020).
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2009; ISBN 0262533057. [Google Scholar]
- Avigad, J.; Donnelly, K. Formalizing O notation in Isabelle/HOL. In Proceedings of the International Joint Conference on Automated Reasoning, Cork, Ireland, 4–8 July 2004; pp. 357–371. [Google Scholar]
- Chivers, I.; Sleightholme, J. An introduction to Algorithms and the Big O Notation. In Introduction to Programming with Fortran; Springer: Berlin, Germany, 2015; pp. 359–364. [Google Scholar]
- Kahn, A.B. Topological sorting of large networks. Commun. ACM 1962, 5, 558–562. [Google Scholar] [CrossRef]
- Xu, J.-K.; Yang, L.-X.; Wang, Z.-Q.; Dong, G.-C.; Huang, J.-Y.; Wang, Y.-L. Effects of soil copper concentration on growth, development and yield formation of rice (Oryza sativa). Rice Sci. 2005, 12, 125–135. [Google Scholar]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Fan, F.M.; Fleischmann, A.S.; Collischonn, W.; Ames, D.P.; Rigo, D. Large-scale analytical water quality model coupled with GIS for simulation of point sourced pollutant discharges. Environ. Model. Softw. 2015, 64, 58–71. [Google Scholar] [CrossRef]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584, 131–144. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, J.; Yan, X.; Zeng, D.; Guo, S. A MapReduce based Parallel Niche Genetic Algorithm for contaminant source identification in water distribution network. Ad Hoc Netw. 2015, 35, 116–126. [Google Scholar] [CrossRef]
- Zeng, D.; Gu, L.; Lian, L.; Guo, S.; Yao, H.; Hu, J. On cost-efficient sensor placement for contaminant detection in water distribution systems. IEEE Trans. Ind. Inform. 2016, 12, 2177–2185. [Google Scholar] [CrossRef]
- García-Callejas, D.; Araújo, M.B. The effects of model and data complexity on predictions from species distributions models. Ecol. Modell. 2016, 326, 4–12. [Google Scholar] [CrossRef]
- Cao, B.; Li, Y.; Zhang, L.; Zhang, L.; Mumtaz, S.; Zhou, Z.; Peng, M. When Internet of Things meets blockchain: Challenges in distributed consensus. IEEE Netw. 2019, 33, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Pervez, H.; Muneeb, M.; Irfan, M.U.; Haq, I.U. A comparative analysis of DAG-based blockchain architectures. In Proceedings of the 2018 12th International Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, 19–21 December 2018; pp. 27–34. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-P.; Mukhtar, H.; Huang, K.-T.; Petway, J.R.; Lin, C.-M.; Chou, C.-F.; Liao, S.-W. Real-Time Identification of Irrigation Water Pollution Sources and Pathways with a Wireless Sensor Network and Blockchain Framework. Sensors 2020, 20, 3634. https://doi.org/10.3390/s20133634
Lin Y-P, Mukhtar H, Huang K-T, Petway JR, Lin C-M, Chou C-F, Liao S-W. Real-Time Identification of Irrigation Water Pollution Sources and Pathways with a Wireless Sensor Network and Blockchain Framework. Sensors. 2020; 20(13):3634. https://doi.org/10.3390/s20133634
Chicago/Turabian StyleLin, Yu-Pin, Hussnain Mukhtar, Kuan-Ting Huang, Joy R. Petway, Chiao-Ming Lin, Cheng-Fu Chou, and Shih-Wei Liao. 2020. "Real-Time Identification of Irrigation Water Pollution Sources and Pathways with a Wireless Sensor Network and Blockchain Framework" Sensors 20, no. 13: 3634. https://doi.org/10.3390/s20133634
APA StyleLin, Y. -P., Mukhtar, H., Huang, K. -T., Petway, J. R., Lin, C. -M., Chou, C. -F., & Liao, S. -W. (2020). Real-Time Identification of Irrigation Water Pollution Sources and Pathways with a Wireless Sensor Network and Blockchain Framework. Sensors, 20(13), 3634. https://doi.org/10.3390/s20133634