Simulating Signal Aberration and Ranging Error for Ultrasonic Indoor Positioning
<p>Simulation setup: the calculation path of the cross-correlation results shown in Figures 3–5; the vertical section A of the typical 4 m × 4 m × 3 m room along which the results displayed in Figure 6 are computed; the horizontal section B where the results displayed in Figure 7 are computed.</p> "> Figure 2
<p>Example of a defined emitting transducer: circular and planar piston transducer with a diameter of D = 25 mm divided into square mathematical elements.</p> "> Figure 3
<p>Numerical results at different transducer apertures D = {25, 20, 16, 13.1, 8.5, 6} mm along a semicircular path at distance R = 1 m from the emitting transducer, using a linear chirp with starting frequency f<sub>L</sub> = 30 kHz and final frequency f<sub>H</sub> = 50 kHz. A linearized air absorption around 40 kHz (slope 39.3 dB/m·MHz, constant term -0.262 dB/m, i.e., about 0.917 dB/m @ 20 kHz and 1.703 dB/m @ 50 kHz) has been assumed, considering the room temperature 20 °C and atmospheric pressure 1 atm: (<b>a</b>) acoustical pressure peak, displayed after normalization and dB conversion, (<b>b</b>) cross-correlation peak, displayed after normalization and dB conversion, and (<b>c</b>) estimated range from the position of the cross-correlation absolute peak. For the first four aperture diameters, the lag of the cross-correlation peak does not correspond to the correct time of arrival (TOA) (see also, <a href="#sensors-20-03548-f004" class="html-fig">Figure 4</a>).</p> "> Figure 3 Cont.
<p>Numerical results at different transducer apertures D = {25, 20, 16, 13.1, 8.5, 6} mm along a semicircular path at distance R = 1 m from the emitting transducer, using a linear chirp with starting frequency f<sub>L</sub> = 30 kHz and final frequency f<sub>H</sub> = 50 kHz. A linearized air absorption around 40 kHz (slope 39.3 dB/m·MHz, constant term -0.262 dB/m, i.e., about 0.917 dB/m @ 20 kHz and 1.703 dB/m @ 50 kHz) has been assumed, considering the room temperature 20 °C and atmospheric pressure 1 atm: (<b>a</b>) acoustical pressure peak, displayed after normalization and dB conversion, (<b>b</b>) cross-correlation peak, displayed after normalization and dB conversion, and (<b>c</b>) estimated range from the position of the cross-correlation absolute peak. For the first four aperture diameters, the lag of the cross-correlation peak does not correspond to the correct time of arrival (TOA) (see also, <a href="#sensors-20-03548-f004" class="html-fig">Figure 4</a>).</p> "> Figure 4
<p>Cross-correlation values along a semicircular path at distance R = 1 m from the emitting transducer at different transducer apertures D = {25, 20, 16, 13.1, 8.5, 6} mm. From D = 25 mm down to D = 6 mm, it is possible to appreciate the progressive appearance of a single correlation peak, which makes the identification of the TOA univocal.</p> "> Figure 5
<p>Cross-correlations along a semicircular path at distance R = 1 m from the emitting transducer for two different transducer apertures: (<b>a</b>) D = 25 mm and (<b>b</b>) D = 8.5 mm. For D = 25 mm, it is possible to see that the single unique peak of the cross-correlation for ϑ = 0° is no longer present at the 45° and 90° angles, while, for D = 8.5 mm, it is possible to appreciate the single correlation peak at all angles. The cross-correlation values are normalized to their maximum value for each aperture: for D = 8.5 mm, the amplitude relative reduction with respect to the increasing angle is much lower than for D = 25 mm, due to the much wider emission of the smaller aperture.</p> "> Figure 6
<p>Computed range error at different transducer apertures D = {25, 20, 16, 13.1, 8.5, 6} mm in a dense grid of points (horizontal and vertical step = 0.05 m) belonging to the vertical 4 m × 3 m Section A (see <a href="#sensors-20-03548-f001" class="html-fig">Figure 1</a>); it is possible to appreciate the progressive widening of the cone of the minimum ranging error going from D = 25 mm to D = 6 mm. For aperture values D = 8.5 mm and D = 6 mm, the low error region includes all the half-space in front of the transducer.</p> "> Figure 7
<p>Computed range error at different transducer apertures D = {25, 20, 16, 13.1, 8.5, 6} mm in a dense grid of points (horizontal and vertical step = 0.05 m) belonging to the horizontal 4 m × 4 m Section B (see <a href="#sensors-20-03548-f001" class="html-fig">Figure 1</a>); it is possible to appreciate the progressive widening of the disk of the minimum ranging error going from D = 25 mm to D = 6 mm. For aperture values D = 8.5 mm and D = 6 mm, the low error region includes all the half-space in front of the transducer.</p> ">
Abstract
:1. Introduction
2. Field II and Simulation Setup
3. Simulations Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zafari, F.; Gkelias, A.; Leung, K.K. A survey of indoor localization systems and technologies. IEEE Commun. Surv. Tutor. 2019, 21, 2568–2599. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Xia, F.; Yang, Z.; Yao, L. Localization Technologies for Indoor Human Tracking. In Proceedings of the 5th International Conference on Future Information Technology, Busan, Korea, 21–23 May 2010; pp. 1–6. [Google Scholar]
- Przybyla, R.J.; Tang, H.Y.; Shelton, S.E.; Horsley, D.A.; Boser, B.E. 3D ultrasonic gesture recognition. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 9–13 February 2014; Volume 57, pp. 210–211. [Google Scholar]
- Paredes, A.; Alvarez, F.J.; Aguilera, T.; Villadangos, J.M. 3D indoor positioning of UAVs with spread spectrum ultrasound and time-of-flight cameras. Sensors 2018, 18, 89. [Google Scholar] [CrossRef] [Green Version]
- Fedele, R.; Praticò, F.; Carotenuto, R.; Della Corte, F.G. Instrumented infrastructures for damage detection and management. In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITSO), Naples, Italy, 26–28 June 2017. [Google Scholar] [CrossRef]
- Seco, F.; Jimenez, A.R.; Prieto, C.; Roa, J.; Koutsou, K. A survey of mathematical methods for indoor localization. In Proceedings of the 2009 IEEE International Symposium on Intelligent Signal Processing, Budapest, Hungary, 26–28 August 2009. [Google Scholar] [CrossRef]
- Carotenuto, R.; Tripodi, P. Touchless 3D gestural interface using coded ultrasounds. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 146–149. [Google Scholar]
- Filonenko, V.; Cullen, C.; Carswell, J. Indoor Positioning for Smartphones Using Asynchronous Ultrasound Trilateration. ISPRS Int. J. Geo-Inf. 2013, 2, 598–620. [Google Scholar] [CrossRef] [Green Version]
- Ureña, J.; Hernández, Á.; García, J.J.; Villadangos, J.M. Acoustic Local Positioning with Encoded Emission Beacons. Proc. IEEE 2018, 106, 1042–1062. [Google Scholar] [CrossRef]
- Carotenuto, R.; Merenda, M.; Iero, D.; della Corte, F.G. An indoor ultrasonic system for autonomous 3D positioning. IEEE Trans. Instrum. Meas. 2019, 68, 2507–2518. [Google Scholar] [CrossRef]
- Sabatini, A.M.; Rocchi, A. Sampled baseband correlators for in-air ultrasonic rangefinders. IEEE Trans. Ind. Electron. 1998, 45, 341–350. [Google Scholar] [CrossRef]
- Aldawi, F.J.; Longstaff, A.P.; Fletcher, S.; Mather, P.; Myers, A. A High Accuracy Ultrasound Distance Measurement System Using Binary Frequency Shift-Keyed Signal and Phase Detection. Available online: http://eprints.hud.ac.uk/id/eprint/3789/ (accessed on 28 April 2020).
- Saad, M.M.; Bleakley, C.J.; Dobson, S. Robust high-accuracy ultrasonic range measurement system. IEEE Trans. Instrum. Meas. 2011, 60, 3334–3341. [Google Scholar] [CrossRef] [Green Version]
- De Marziani, C.; Ureña, J.; Hernández, A.; García, J.J.; Alvarez, F.J.; Jiménez, A.; Pérez, M.C.; Villadangos, J.M.; Aparicio, J.; Alcoleas, R. Simultaneous round-trip time-of-flight measurements with encoded acoustic signals. IEEE Sens. J. 2012, 12, 2931–2940. [Google Scholar] [CrossRef]
- Carotenuto, R. A range estimation system using coded ultrasound. Sens. Actuators A-Phys. 2016, 238, 104–111. [Google Scholar] [CrossRef]
- Carotenuto, R.; Merenda, M.; Iero, D.; della Corte, F.G. Ranging RFID tags with ultrasound. IEEE Sens. J. 2018, 18, 2967–2975. [Google Scholar] [CrossRef]
- Pérez, M.C.; Serrano, R.S.; Ureña, J.; Hernández, A.; de Marziani, C.; Alvarez, F.J. Correlator implementation for orthogonal CSS used in an ultrasonic LPS. IEEE Sens. J. 2012, 12, 2807–2816. [Google Scholar]
- Jackson, J.C.; Summan, R.; Dobie, G.I.; Whiteley, S.M.; Pierce, S.G.; Hayward, G. Time-of-flight measurement techniques for airborne ultrasonic ranging. IEEE Trans. Ultrason. Ferroelect. Freq. Control 2013, 60, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Kinsler, L.; Frey, A.; Coppens, A.; Sanders, J. Fundamentals of Acoustics; John Wiley & Sons, Inc.: New York, NY, USA, 2000; ISBN 0-471-84789-5. [Google Scholar]
- Gualda, D.; Ureña, J.; García, J.J.; Jiménez, A.; Pérez, M.C.; Ciudad, F. Coverage analysis of an ultrasonic local positioning system according to the angle of inclination of the beacons structure. In Proceedings of the IEEE IPIN, Pisa, Italy, 30 September–3 October 2019; pp. 1–7. [Google Scholar]
- Jensen, J.A. Field: A program for simulating ultrasound systems. Med. Biol. Eng. Comp. 1996, 34, 351–352. [Google Scholar]
- Field II Home Page. Available online: https://field-ii.dk/ (accessed on 28 April 2020).
- Tupholme, G.E. Generation of acoustic pulses by baffled plane pistons. Mathematika 1969, 16, 209–224. [Google Scholar] [CrossRef]
- Stepanishen, P.R. The time-dependent force and radiation impedance on a piston in a rigid infinite planar baffle. J. Acoust. Soc. Am. 1971, 49, 841–849. [Google Scholar] [CrossRef]
- Stepanishen, P.R. Transient radiation from pistons in an infinite planar baffle. J. Acoust. Soc. Am. 1971, 49, 1629–1638. [Google Scholar] [CrossRef]
- Jensen, J.A.; Svendsen, N.B. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Carotenuto, R.; Merenda, M.; Iero, D.; della Corte, F.G. Mobile Synchronization Recovery for Ultrasonic Indoor Positioning. Sensors 2020, 20, 702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bass, H.E.; Sutherland, L.C.; Zuckerwar, A.J.; Blackstocks, D.T.; Hester, D.M. Atmospheric absorption of sound: Further developments. J. Acoust. Soc. Am. 1995, 97, 680–683. [Google Scholar] [CrossRef]
- García, E.; Holm, S.; García, J.J.; Ureña, J. Link Budget for Low Bandwidth and Coded Ultrasonic Indoor Location Systems. In Proceedings of the Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 21–23 September 2011. [Google Scholar]
- Specification of Ultrasonic Transducer Type MA40S4S. Available online: https://www.murata.com/products/productdata/8797589340190/MASPOPSE.pdf?1450668610000 (accessed on 28 April 2020).
- Air Ultrasonic Ceramic Transducers: 328ST/R160. Available online: http://www.prowave.com.tw/english/products/ut/open-type/328s160c.htm (accessed on 28 April 2020).
- Ens, A.; Reindl, L.M.; Bordoy, J.; Wendeberg, J.; Schindelhauer, C. Unsynchronized ultrasound system for TDOA localization. In Proceedings of the in International Conference on Indoor Positioning and Indoor Navigation (IPIN)), Busan, Korea, 27–30 October 2014; pp. 601–610. [Google Scholar]
- Della Corte, F.G.; Merenda, M.; Bellizzi, G.G.; Isernia, T.; Carotenuto, R. Temperature Effects on the Efficiency of Dickson Charge Pumps for Radio Frequency Energy Harvesting. IEEE Access 2018, 6, 65729–65736. [Google Scholar] [CrossRef]
- Medina, C.; Segura, J.C.; de la Torre, Á. Ultrasound Indoor Positioning System Based on a Low-Power Wireless Sensor Network Providing Sub-Centimeter Accuracy. Sensors 2013, 13, 3501–3526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Emitter aperture D (mm) | Low Error Cone Vertex Angle φ (°) | Range Maximum Error (mm) |
---|---|---|
6 | 180 | 3.3 |
8.5 | 180 | 3.3 |
13.1 | 93.51 | 13.3 |
16 | 73.26 | 13.7 |
20 | 55.84 | 14.2 |
25 | 44.62 | 14.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carotenuto, R.; Merenda, M.; Iero, D.; G. Della Corte, F. Simulating Signal Aberration and Ranging Error for Ultrasonic Indoor Positioning. Sensors 2020, 20, 3548. https://doi.org/10.3390/s20123548
Carotenuto R, Merenda M, Iero D, G. Della Corte F. Simulating Signal Aberration and Ranging Error for Ultrasonic Indoor Positioning. Sensors. 2020; 20(12):3548. https://doi.org/10.3390/s20123548
Chicago/Turabian StyleCarotenuto, Riccardo, Massimo Merenda, Demetrio Iero, and Francesco G. Della Corte. 2020. "Simulating Signal Aberration and Ranging Error for Ultrasonic Indoor Positioning" Sensors 20, no. 12: 3548. https://doi.org/10.3390/s20123548
APA StyleCarotenuto, R., Merenda, M., Iero, D., & G. Della Corte, F. (2020). Simulating Signal Aberration and Ranging Error for Ultrasonic Indoor Positioning. Sensors, 20(12), 3548. https://doi.org/10.3390/s20123548