Ultrasensitive Surface Plasmon Resonance Biosensor Using Blue Phosphorus–Graphene Architecture
<p>Schematic diagram of the SF11 prism/Au film/ BlueP/graphene biosensor.</p> "> Figure 2
<p>The reflectivity (black) and phase (red) variation with respect to the incident angle. The number of BlueP and graphene layers is 2 and 4, respectively. The Au film thickness is 42 nm. The incident wavelength is 632.8 nm.</p> "> Figure 3
<p>Variation of reflectivity (<b>a</b>) and phase (<b>b</b>) with respect to the incident angle by tuning the number of graphene overlayers ranging from 0 to 5 layers. The Au film thickness is 42 nm. The number of blue phosphorus layers is 2. The incident wavelength is 632.8 nm.</p> "> Figure 4
<p>Variation of reflectivity (<b>a</b>) and phase (<b>b</b>) with respect to the incident angle by changing the number of BlueP interlayers ranging from 0 to 4 layers. The Au film thickness is 42 nm. The number of graphene is 4. The incident wavelength is 632.8 nm. Note: the black dotted curve in <a href="#sensors-20-03326-f004" class="html-fig">Figure 4</a>a stands for the SPR reflectance originating from the 42 nm Au film. The black dotted curve in <a href="#sensors-20-03326-f004" class="html-fig">Figure 4</a>b denotes the SPR phase originating from the 42 nm Au film.</p> "> Figure 5
<p>For a tiny refractive-index variation as small as 0.0012 RIU approaching the sensing interface, the change in differential phase (<b>a</b>), red-shifts based on SPR incident angle (<b>b</b>) with respect to the thickness of gold film ranging from 35 to 50 nm. The excitation wavelength is 632.8 nm.</p> "> Figure 6
<p>Change in differential phase with respect to the variation in local refractive index of the sensing interface by modulating the numbers of the BlueP interlayer and the thickness of Au film: (<b>a</b>) 41 nm, (<b>b</b>) 42 nm, (<b>c</b>) 43 nm, and (<b>d</b>) 44 nm, respectively.</p> "> Figure 7
<p>(<b>a</b>) The enhanced electric field distribution approaching the sensing interface based on the 42 nm Au film/2-layer BlueP/4-layer graphene. (<b>b</b>) Evanescent decay of significantly enhanced electric field penetrating into the sensing medium. The red line shows that the penetration depth (LP) is ∼168.2 nm, which can be obtained by calculating the distance from the point with the largest intensity to the point whose intensity reduces to 1/e of the largest value. Annotation: Au (42 nm)_BlueP (2L)_G(4L) in <a href="#sensors-20-03326-f007" class="html-fig">Figure 7</a>a is the abbreviation of our proposed configuration (42 nm Au film/2-layer BlueP/4-layer graphene.</p> "> Figure 8
<p>For an extremely tiny refractive index variation in a level of 1 × 10<sup>−6</sup> RIU, the comparison of change in differential phase with regard to the pure 42 nm Au film, 42 nm Au film/4-layer graphene, and 42 nm Au film/2-layer BlueP/4-layer graphene. Annotation: Au (42 nm)_BlueP (2L)_G(4L) in <a href="#sensors-20-03326-f008" class="html-fig">Figure 8</a> is the abbreviation of our proposed configuration (42 nm Au film/2-layer BlueP/4-layer graphene.</p> ">
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, Z.; Tománek, D. Semiconducting layered blue phosphorus: A computational study. Phys. Rev. Lett. 2014, 112, 176802. [Google Scholar] [CrossRef]
- Zhang, J.L.; Zhao, S.; Han, C.; Wang, Z.; Zhong, S.; Sun, S.; Guo, R.; Zhou, X.; Gu, C.D.; Yuan, K.D. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett. 2016, 16, 4903–4908. [Google Scholar] [CrossRef]
- Golias, E.; Krivenkov, M.; Varykhalov, A.; Sánchez-Barriga, J.; Rader, O. Band renormalization of blue phosphorus on Au (111). Nano Lett. 2018, 18, 6672–6678. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.-P.; Zhang, J.-Q.; Tian, H.; Xu, H.; Ho, W.; Xie, M. One-dimensional phosphorus chain and two-dimensional blue phosphorene grown on Au (111) by molecular-beam epitaxy. Phys. Rev. Mater. 2017, 1, 061002. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.L.; Zhao, S.; Sun, S.; Ding, H.; Hu, J.; Li, Y.; Xu, Q.; Yu, X.; Telychko, M.; Su, J.; et al. Synthesis of Monolayer Blue Phosphorus Enabled by Silicon Intercalation. ACS Nano 2020, 14, 3687–3695. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, S. Gas adsorption on monolayer blue phosphorus: Implications for environmental stability and gas sensors. Nanotechnology 2017, 28, 175708. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Xu, Z.; Liu, Z.; Jin, S.; Zhang, H.; Ding, Z. Strain-and fluorination-induced quantum spin Hall insulators in blue phosphorene: A first-principles study. J. Phys. Chem. C 2017, 121, 12945–12952. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X. Dirac fermions in blue-phosphorus. 2D Mater. 2014, 1, 031002. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Deng, D.; Novoselov, K.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218. [Google Scholar] [CrossRef]
- Mogulkoc, Y.; Modarresi, M.; Mogulkoc, A.; Alkan, B. Electronic and optical properties of boron phosphide/blue phosphorus heterostructures. Phys. Chem. Chem. Phys. 2018, 20, 12053–12060. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.W.; Sreekanth, K.V.; Shang, J.Z.; Yu, T.; Chen, C.K.; Yin, F.; Baillargeat, D.; Coquet, P.; Ho, H.P.; Kabashin, A.V.; et al. Graphene-Gold Metasurface Architectures for Ultrasensitive Plasmonic Biosensing. Adv Mater 2015, 27, 6163–6169. [Google Scholar] [CrossRef]
- Chiu, N.F.; Lin, T.L. Affinity capture surface carboxyl-functionalized MoS2 sheets to enhance the sensitivity of surface plasmon resonance immunosensors. Talanta 2018, 185, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Chen, Y.F.; Wang, H.; Hu, S.Q.; Luo, Y.H.; Dong, J.L.; Zhu, W.G.; Qiu, W.T.; Guan, H.Y.; Lu, H.H.; et al. Plasmonic Interface Modified with Graphene Oxide Sheets Overlayer for Sensitivity Enhancement. Acs Appl. Mater. Interfaces 2018, 10, 34916–34923. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, H.; Dong, J.L.; Hu, S.Q.; Zhu, W.G.; Qiu, W.T.; Lu, H.H.; Yu, J.H.; Guan, H.Y.; Gao, S.C.; et al. Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer. Photon. Res. 2018, 6, 485–491. [Google Scholar] [CrossRef]
- Xue, T.Y.; Liang, W.Y.; Li, Y.W.; Sun, Y.H.; Xiang, Y.J.; Zhang, Y.P.; Dai, Z.G.; Duo, Y.H.; Wu, L.M.; Qi, K.; et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Pandey, A.K. Blue Phosphorene/MoS2 Heterostructure Based SPR Sensor With Enhanced Sensitivity. IEEE Photonics Technol. Letters. 2018, 30, 595–598. [Google Scholar] [CrossRef]
- Srivastava, A.; Prajapati, Y.K. Performance Analysis of Silicon and Blue Phosphorene/MoS2 Hetero-Structure Based SPR Sensor. Photonic Sens. 2019, 9, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Liu, Y.; Teng, J. Design of an ultrasensitive SPR biosensor based on a graphene-MoS2 hybrid structure with a MgF 2 prism. Appl. Opt. 2018, 57, 3639–3644. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Hu, S.; Xia, J.; Anderson, T.; Dinh, X.-Q.; Meng, X.-M.; Coquet, P.; Yong, K.-T. Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B Chem. 2015, 207, 801–810. [Google Scholar] [CrossRef]
- Yuan, Y.; Yu, X.; Ouyang, Q.; Shao, Y.; Song, J.; Qu, J.; Yong, K.-T. Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight. 2D Mater. 2018, 5, 025015. [Google Scholar] [CrossRef]
- Sudheer, V.; Kumar, S.S.; Sankararaman, S. Ultrahigh Sensitivity Surface Plasmon Resonance–Based Fiber-Optic Sensors Using Metal-Graphene Layers with Ti3C2T x MXene Overlayers. Plasmonics 2020, 15, 457–466. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Huang, H.L.; Yang, X.M.; Zang, L. Tailoring Electronic Properties of Graphene by pi-pi Stacking with Aromatic Molecules. J. Phys. Chem. Lett. 2011, 2, 2897–2905. [Google Scholar] [CrossRef]
- Bjork, J.; Hanke, F.; Palma, C.A.; Samori, P.; Cecchini, M.; Persson, M. Adsorption of Aromatic and Anti-Aromatic Systems on Graphene through pi-pi Stacking. J. Phys. Chem. Lett. 2010, 1, 3407–3412. [Google Scholar] [CrossRef]
- Pei, W.; Zhang, T.; Wang, Y.; Chen, Z.; Umar, A.; Li, H.; Guo, W. Enhancement of charge transfer between graphene and donor–π-acceptor molecule for ultrahigh sensing performance. Nanoscale 2017, 9, 16273–16280. [Google Scholar] [CrossRef]
- Zanchetta, G.; Lanfranco, R.; Giavazzi, F.; Bellini, T.; Buscaglia, M. Emerging applications of label-free optical biosensors. Nanophotonics Berl. 2017, 6, 627–645. [Google Scholar] [CrossRef]
- Salina, M.; Giavazzi, F.; Lanfranco, R.; Ceccarello, E.; Sola, L.; Chiari, M.; Chini, B.; Cerbino, R.; Bellini, T.; Buscaglia, M. Multi-spot, label-free immunoassay on reflectionless glass. Biosens. Bioelectron. 2015, 74, 539–545. [Google Scholar] [CrossRef]
- Avci, O.; Unlu, N.L.; Ozkumur, A.Y.; Unlu, M.S. Interferometric Reflectance Imaging Sensor (IRIS)-A Platform Technology for Multiplexed Diagnostics and Digital Detection. Sensors 2015, 15, 17649–17665. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yuan, Y.; Peng, X.; Song, J.; Liu, J.; Qu, J. An ultrasensitive Fano resonance biosensor using two dimensional hexagonal boron nitride nanosheets: Theoretical analysis. RSC Adv. 2019, 9, 29805–29812. [Google Scholar] [CrossRef] [Green Version]
- Mogulkoc, Y.; Modarresi, M.; Mogulkoc, A.; Ciftci, Y. Electronic and optical properties of bilayer blue phosphorus. Comput. Mater. Sci. 2016, 124, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Bruna, M.; Borini, S. Optical constants of graphene layers in the visible range. Appl. Phys. Lett. 2009, 94, 031901. [Google Scholar] [CrossRef]
- Zeng, S.W.; Yu, X.; Law, W.C.; Zhang, Y.T.; Hu, R.; Dinh, X.Q.; Ho, H.P.; Yong, K.T. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sens. Actuators B Chem. 2013, 176, 1128–1133. [Google Scholar] [CrossRef]
- Sreekanth, K.V.; Zeng, S.W.; Yong, K.T.; Yu, T. Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuators B Chem. 2013, 182, 424–428. [Google Scholar] [CrossRef]
- Gupta, B.D.; Sharma, A.K. Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: A theoretical study. Sens. Actuators B Chem. 2005, 107, 40–46. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wei, X.; Premaratne, M.; Zhu, W. Experimental demonstration of an electrically tunable broadband coherent perfect absorber based on a graphene–electrolyte–graphene sandwich structure. Photonics Res. 2019, 7, 868–874. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zeng, S.; Jiang, L.; Hong, L.; Xu, G.; Dinh, X.Q.; Qian, J.; He, S.; Qu, J.; Coquet, P.; et al. Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 2016, 6, 28190. [Google Scholar] [CrossRef]
- Prajapati, Y.; Srivastava, A.J.S. Microstructures, Effect of BlueP/MoS2 heterostructure and graphene layer on the performance parameter of SPR sensor: Theoretical insight. Superlattices Microstruct. 2019, 129, 152–162. [Google Scholar] [CrossRef]
- Wu, L.; Jia, Y.; Jiang, L.; Guo, J.; Dai, X.; Xiang, Y.; Fan, D. Sensitivity improved SPR biosensor based on the MoS2/graphene–aluminum hybrid structure. J. Lightwave Technol. 2016, 35, 82–87. [Google Scholar] [CrossRef]
Au Film | Number of BlueP | θSPR | Minimum Reflectivity | Sensitivity (°/RIU) | ||
---|---|---|---|---|---|---|
42 nm | 0 | 54.7152° | 0.0837° | 107.9544° | 3.6543 × 10−5 | 8.9962 × 104 °/RIU |
42 nm | 1 | 54.7650° | 0.0840° | 130.1169° | 1.3667 × 10−5 | 1.0843 × 105 °/RIU |
42 nm | 2 | 54.8152° | 0.0841° | 176.7661° | 5.3787 × 10−6 | 1.4731 × 105 °/RIU |
42 nm | 3 | 54.8658° | 0.0843° | 119.2825° | 1.1914 × 10−5 | 9.9402 × 104 °/RIU |
42 nm | 4 | 54.9167° | 0.0844° | 95.1485° | 3.3275 × 10−5 | 7.9290 × 104 °/RIU |
SPR Configuration | Prism | Incident Wavelength (nm) | Angular Sensitivity (°/RIU) | Phase Sensitivity (°/RIU) | References |
---|---|---|---|---|---|
Au–Si–WS2 | SF10 | 632.8 | 147.88 | ---------- | [37] |
Au–BlueP/MoS2–Graphene | BK7 | 632.8 | 204 | ---------- | [38] |
Ag–BlueP/MoS2 | CaF2 | 662 | 432.15 | ---------- | [17] |
Au–Silicon–BlueP/MoS2 | BK7 | 632.8 | 230.66 | ---------- | [18] |
Graphene–Al–MoS2–Graphene | MgF2 | 632.8 | 540.8 | ---------- | [19] |
Air-MoS2–Al–MoS2–Graphene | BK7 | 632.8 | -------- | 8.19 × 104 | [39] |
Au–MoS2–Graphene | BK7 | 632.8 | ---------- | 8.1852 × 104 | [20] |
Au–BlueP–Graphene | SF11 | 632.8 | 70.0833 | 1.4731 × 105 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Li, L.; Xu, N.; Peng, X.; Zhou, Y.; Yuan, Y.; Song, J.; Qu, J. Ultrasensitive Surface Plasmon Resonance Biosensor Using Blue Phosphorus–Graphene Architecture. Sensors 2020, 20, 3326. https://doi.org/10.3390/s20113326
Li K, Li L, Xu N, Peng X, Zhou Y, Yuan Y, Song J, Qu J. Ultrasensitive Surface Plasmon Resonance Biosensor Using Blue Phosphorus–Graphene Architecture. Sensors. 2020; 20(11):3326. https://doi.org/10.3390/s20113326
Chicago/Turabian StyleLi, Keyi, Lintong Li, Nanlin Xu, Xiao Peng, Yingxin Zhou, Yufeng Yuan, Jun Song, and Junle Qu. 2020. "Ultrasensitive Surface Plasmon Resonance Biosensor Using Blue Phosphorus–Graphene Architecture" Sensors 20, no. 11: 3326. https://doi.org/10.3390/s20113326
APA StyleLi, K., Li, L., Xu, N., Peng, X., Zhou, Y., Yuan, Y., Song, J., & Qu, J. (2020). Ultrasensitive Surface Plasmon Resonance Biosensor Using Blue Phosphorus–Graphene Architecture. Sensors, 20(11), 3326. https://doi.org/10.3390/s20113326