Highly Sensitive E-Textile Strain Sensors Enhanced by Geometrical Treatment for Human Monitoring
<p>Manufacturing process from polyester/spandex (PET/SP) fabric consisting of (<b>a</b>) dipping single-walled carbon nanotubes (SWCNTs), (<b>b</b>) PET/SP fabrics, (<b>c</b>) squeezing, (<b>d</b>) drying SWCNT, (<b>e</b>) SWCNT fabrics, (<b>f</b>) screen printing Ag pastes, (<b>g</b>) drying Ag/SWCNT, (<b>h</b>) Ag/SWCNT fabrics, (<b>i</b>) laser cutting, (<b>j</b>) the different shapes of Ag/SWCNT sensors.</p> "> Figure 2
<p>SEM pictures of the sensors at different magnifications consisting of (<b>a</b>) initial PET/SP fabrics at 10 mm, (<b>b</b>) SWCNT sensors at 10 mm, (<b>c</b>) Ag/SWCNT sensors at 10 mm, (<b>d</b>) PET/SP fabrics at 50 µm, (<b>e</b>) SWCNT sensors at 50 µm, (<b>f</b>) Ag/SWCNT sensors at 50 µm, (<b>g</b>) PET/SP fabrics at 10 µm, (<b>h</b>) SWCNT sensors at 10 µm, (<b>i</b>) Ag/SWCNT sensors at 10 µm, (<b>j</b>) PET/SP fabrics at 2 µm, (<b>k</b>) SWCNT sensors at 2 µm, (<b>l</b>) Ag/SWCNT sensors at 2 µm.</p> "> Figure 3
<p>(<b>a</b>) Universal testing machine (UTM), (<b>b</b>) relationship of strain–resistance of SWCNT sensors, (<b>c</b>) relationship of strain–resistance of Ag sensors, and (<b>d</b>) relationship of strain–resistance of Ag/SWCNT sensors.</p> "> Figure 4
<p>The first round in optimizing sensor performances based on different shapes.</p> "> Figure 5
<p>The second in optimizing sensor performances based on the different number of BCLs.</p> "> Figure 6
<p>The third round in optimizing sensor performances based on the different lengths of the BCLs.</p> "> Figure 7
<p>Characteristics of the Ag/SWCNT sensors (integrated small BCLs) consisting of (<b>a</b>) hysteresis, (<b>b</b>) response time, (<b>c</b>) recovery time, (<b>d</b>) signals at different frequencies, (<b>e</b>) durability after 30,000 stretching/releasing cycles, and (<b>f</b>) durability after 50 washing times.</p> "> Figure 8
<p>Comparison (GF) with other studies.</p> "> Figure 9
<p>(<b>a</b>) structure of sensors on fingers, (<b>b</b>) hardware platform, (<b>c</b>) signals of finger motions at different angles, and (<b>d</b>) signals of pharynx motions when speaking, coughing, and swallowing.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure of the Sensors
3.2. Shape of the Sensors
4. Applications of Sensor
5. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sazonov, E. Wearable Sensors: Fundamentals, Implementation and Applications, 1st ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 85–175. [Google Scholar]
- Ashok Kumar, L.; Vigneswaran, C. Electronics in Textiles and Clothing Design, Products and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–185. [Google Scholar]
- Cuong, V.C.; Jooyong, K. Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms. Sensors 2018, 18, 3109. [Google Scholar]
- Seyedin, S.; Zhang, P.; Naebe, M.; Qin, S.; Chen, J.; Wanga, X.; Razal, J.M. Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 2019, 6, 219–249. [Google Scholar] [CrossRef]
- Tao, X. Handbook of Smart Textiles, 1st ed.; Springer: Singapore, 2015; pp. 293–316. [Google Scholar]
- Liu, X.; Tang, C.; Du, X.; Xiong, S.; Xi, S.; Liu, Y.; Shen, X.; Zheng, Q.; Wang, Z.; Wu, Y.; et al. A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Mater. Horiz. 2017, 4, 477–486. [Google Scholar] [CrossRef]
- Liu, X.; Liu, D.; Lee, J.; Zheng, Q.; Du, X.; Zhang, X.; Xu, H.; Wang, Z.; Wu, Y.; Shen, X.; et al. Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors. ACS Appl. Mater. Interfaces 2019, 11, 2282–2294. [Google Scholar] [CrossRef] [PubMed]
- Atalay, O.; Atalay, A.; Gafford, J.; Wang, H.; Wood, R.; Walsh, C. A Highly Stretchable Capacitive-Based Strain Sensor Based on Metal Deposition and Laser Rastering. Adv. Mater. Technol. 2017, 2, 1700081. [Google Scholar] [CrossRef]
- Atalay, A.; Sanchez, V.; Atalay, O.; Vogt, D.M.; Haufe, F.; Wood, R.J.; Walsh, C.J. Batch Fabrication of Customizable Silicone-Textile Composite Capacitive Strain Sensors for Human Motion Tracking. Adv. Mater. Technol. 2017, 2, 1700136. [Google Scholar] [CrossRef] [Green Version]
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001. [Google Scholar] [CrossRef]
- Xie, J.; Long, H.; Miao, M. High sensitivity knitted fabric strain sensors. Smart Mater. Struct. 2016, 25, 105008. [Google Scholar] [CrossRef]
- Atalay, O. Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications. Materials 2018, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Tolvanen, J.; Hannu, J.; Jantunen, H. Stretchable and Washable Strain Sensor Based on Cracking Structure for Human Motion Monitoring. Sci. Rep. 2018, 8, 13241. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Dai, K.; Wang, Y.; Zheng, G.; Liu, C.; Shen, C. A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 2018, 156, 276–286. [Google Scholar] [CrossRef]
- Cai, G.; Yang, M.; Xu, Z.; Liu, J.; Tang, B.; Wang, X. Flexible and wearable strain sensing fabrics. Chem. Eng. J. 2017, 325, 396–403. [Google Scholar] [CrossRef]
- Sadeqi, A.; Nejad, H.R.; Alaimo, F.; Yun, H.; Punjiya, M.; Sonkusale, S.R. Washable Smart Threads for Strain Sensing Fabrics. IEEE Sens. J. 2018, 18, 9137–9144. [Google Scholar] [CrossRef]
- Chen, X.; Li, B.; Qiao, Y.; Lu, Z. Preparing Polypyrrole-Coated Stretchable Textile via Low-Temperature Interfacial Polymerization for Highly Sensitive Strain Sensor. Micromachines 2019, 10, 788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, Y.-H.; Chan, C.-H.; Tang, W.C. Alignment of Multiple Electrospun Piezoelectric Fiber Bundles Across Serrated Gaps at an Incline: A Method to Generate Textile Strain Sensors. Sci. Rep. 2017, 7, 15436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinno, H.; Fukuda, K.; Xu, X.; Park, S.; Suzuki, Y.; Koizumi, M.; Yokota, T.; Osaka, I.; Takimiya, K.; Someya, T. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2017, 2, 780–785. [Google Scholar] [CrossRef]
- Song, J.; Tan, Y.; Chu, Z.; Xiao, M.; Li, G.; Jiang, Z.; Wang, J.; Hu, T. Hierarchical Reduced Graphene Oxide Ridges for Stretchable, Wearable, and Washable Strain Sensors. ACS Appl. Mater. Interfaces 2019, 11, 1283–1293. [Google Scholar] [CrossRef]
- Kim, J.; Lee, M.; Shim, H.J.; Ghaffari, R.; Cho, H.R.; Son, D.; Jung, Y.H.; Soh, M.; Choi, C.; Jung, S.; et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747. [Google Scholar] [CrossRef] [Green Version]
- Tangsirinaruenart, O.; Stylios, G. A Novel Textile Stitch-Based Strain Sensor for Wearable End Users. Materials 2019, 12, 1469. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Chen, Y.; Li, Y.; Zhang, Y.; Zhang, J.; Huang, L. A Flexible Strain Sensor Based on the Porous Structure of a Carbon Black/Carbon Nanotube Conducting Network for Human Motion Detection. Sensors 2020, 20, 1154. [Google Scholar] [CrossRef] [Green Version]
- Chun, S.; Choi, Y.; Park, W. All-graphene strain sensor on soft substrate. Carbon 2017, 116, 753–759. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Su, M.; Li, W.; Li, Y.; Li, H.; Qian, X.; Zhang, X.; Li, F.; Song, Y. Electronic Textile by Dyeing Method for Multiresolution Physical Kineses Monitoring. Adv. Electron. Mater. 2017, 3, 1700253. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Y.; Hu, W.; Guo, X.; Wang, Y.; Liu, P.; Liu, C.; Zhang, Y. Highly sensitive flexible strain sensor based on threadlike spandex substrate coating with conductive nanocomposites for wearable electronic skin. Smart Mater. Struct. 2019, 28, 035004. [Google Scholar] [CrossRef]
- Chen, S.; Liu, S.; Wang, P.; Liu, H.; Liu, L. Highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human motions detection, health monitoring, and 2D force mapping. J. Mater. Sci. 2018, 53, 2995–3005. [Google Scholar] [CrossRef]
- Choi, D.Y.; Kim, M.H.; Oh, Y.S.; Jung, S.-H.; Jung, J.H.; Sung, H.J.; Lee, H.W.; Lee, H.M. Highly Stretchable, Hysteresis-Free Ionic Liquid-Based Strain Sensor for Precise Human Motion Monitoring. ACS Appl. Mater. Interfaces 2017, 9, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lou, Z.; Chen, D.; Jiang, K.; Shen, G. Polymer-Enhanced Highly Stretchable Conductive Fiber Strain Sensor Used for Electronic Data Gloves. Adv. Mater. Technol. 2016, 1, 1600136. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Wang, Q.; Jian, M.; Zhang, Y. Sheath−Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors. ACS Appl. Mater. Interfaces 2016, 8, 20894–20899. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Sun, J.; Huang, Y.; Hu, H.; Jiang, R.; Gai, W.; Li, G.; Zhi, C. Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection. ACS Appl. Mater. Interfaces 2016, 8, 24837–24843. [Google Scholar] [CrossRef]
- Zhong, W.; Liu, C.; Xiang, C.; Jin, Y.; Li, M.; Liu, K.; Liu, Q.; Wang, Y.; Sun, G.; Wang, D. Continuously Producible Ultrasensitive Wearable Strain Sensor Assembled with Three-Dimensional Interpenetrating Ag Nanowires/Polyolefin Elastomer Nanofibrous Composite Yarn. ACS Appl. Mater. Interfaces 2017, 9, 42058–42066. [Google Scholar] [CrossRef]
- nRF52840 Product Specification. Available online: https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf (accessed on 7 April 2020).
The GF of Ag/SWCNT samples at the strain of 20% | |
---|---|
Sample | GF |
Zizac line - 0 BCLs | 4 |
2 lines - 0 BCLs | 15 |
1 line - 0 BCLs | 12.5 |
2 lines - 2 BCLs, = 2 mm | 20.45 |
1 line - 4 BCLs, = 2 mm | 36.25 |
1 line - 6 BCLs, = 2 mm | 6.67 |
1 line - 4 BCLs, = 0.5 mm | 25.6 |
1 line - 4 BCLs, = 1 mm | 71.5 |
1 line - 4 BCLs, = 2.5 mm | 23.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, C.C.; Kim, J. Highly Sensitive E-Textile Strain Sensors Enhanced by Geometrical Treatment for Human Monitoring. Sensors 2020, 20, 2383. https://doi.org/10.3390/s20082383
Vu CC, Kim J. Highly Sensitive E-Textile Strain Sensors Enhanced by Geometrical Treatment for Human Monitoring. Sensors. 2020; 20(8):2383. https://doi.org/10.3390/s20082383
Chicago/Turabian StyleVu, Chi Cuong, and Jooyong Kim. 2020. "Highly Sensitive E-Textile Strain Sensors Enhanced by Geometrical Treatment for Human Monitoring" Sensors 20, no. 8: 2383. https://doi.org/10.3390/s20082383
APA StyleVu, C. C., & Kim, J. (2020). Highly Sensitive E-Textile Strain Sensors Enhanced by Geometrical Treatment for Human Monitoring. Sensors, 20(8), 2383. https://doi.org/10.3390/s20082383