Groupwise Image Alignment via Self Quotient Images
<p>Ten strongly geometrically deformed images from Yale database as well as their mean image (first row). Their aligned counterparts with their corresponding mean (second row) after their groupwise alignment by the proposed algorithm.</p> "> Figure 2
<p>Photometrically distorted images from Yale database (first column) and their Self Quotient Images (SQI) counterparts before (second column) and after thresholding (third column). Images with occluded areas from Yale database (fourth column) and their SQI counterparts before (fifth column) and after thresholding (sixth column).</p> "> Figure 3
<p>Original <math display="inline"><semantics> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>T</mi> <mn>2</mn> </mrow> </semantics></math>, Proton Density (PD) and magnetic resonance angiography (MRA) images respectively (first row) and their SQI’s counterparts after thresholding (second row).</p> "> Figure 4
<p>Mean misalignment images (first column) of 110 photometrically distorted images from Yale database and mean images resulting from their groupwise alignment by the LKE (second column) and the proposed technique (third column) with <math display="inline"><semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> (bottom line), <math display="inline"><semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> (middle line) and <math display="inline"><semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> (top line).</p> "> Figure 5
<p>Mean Misalignment images (first row) of 110 photometrically distorted images (<math display="inline"><semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>), distributed into 10 sets from Yale database. The mean images from each group (10 first comumns) the total mean image (11th column) and the total mean SQ images (last column), resulting from their groupwise alignment by the Lucas–Kanade Entropy (LKE) (second row) and the proposed technique (third row).</p> "> Figure 6
<p>Mean misalignment images (first column for <math display="inline"><semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> (top), <math display="inline"><semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> (middle) and <math display="inline"><semantics> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> (bottom)) of 300 images from AR database (100 neutral frontal pose (third column), 100 partially occluded by sunglasses (fourth column) and 100 partially occluded by scarfs (fifth column)) and mean images (second column) resulting from their groupwise alignment by the proposed first, third and fifth row and the LKE technique second, fourth and sixth row.</p> "> Figure 7
<p>Mean misalignment images of MR images of the same modality with no warp (first row) and with warp of <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> (second row). Images before alignment (first column) and after alignment with LKE (second column) and the proposed (third column).</p> "> Figure 8
<p>Mean misalignment images of <math display="inline"><semantics> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>T</mi> <mn>2</mn> </mrow> </semantics></math> MR images with warp of <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (first row) and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> (second row). Images before alignment (first column) and after alignment with LKE (second column) and the proposed (third column).</p> "> Figure 9
<p>Mean misalignment images of <math display="inline"><semantics> <mrow> <mi>T</mi> <mn>2</mn> </mrow> </semantics></math>, PD and MRA images with warp of <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (first row) and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> (second row). Image before alignment (first column) and after alignment with LKE (second column) and the proposed (third column).</p> ">
Abstract
:1. Introduction
2. Problem Formulation
2.1. Preliminaries
2.2. The Proposed Solution
- : The k-th member of the sequence, is an approximation of the “mean” image in the k-th iteration of the minimization process
- : The limit of the sequence we would like to be the unknown “mean” image, that is:
Algorithm 1: Outline of the Proposed LS-Groupwise Algorithm |
|
3. Registration of Multimodal Images
3.1. Photometrically—Distorted Images
3.2. Multimodal MR Images
3.3. Self Quotient Images
4. Experiments
4.1. Experiment 1
4.2. Experiment 2
4.3. Experiment 3
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Q.; Wang, Q. Groupwise registration of brain magnetic resonance images: A review. J. Shanghai Jiaotong Univ. (Sci.) 2014, 19, 755–762. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Y.; Yu, J.; Leung, H.; Li, Y. Ensemble registration of multisensor images by a variational bayesian approach. IEEE Sens. J. 2014, 14, 2698–2705. [Google Scholar] [CrossRef]
- Arandjelovic, O.; Pham, D.S.; Venkatesh, S. Groupwise registration of aerial images. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015. [Google Scholar]
- Learned-Miller, E.G. Data driven image models through continuous joint alignment. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 28, 236–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zollei, L. A Unified Information Theoretic Framework for Pair-and Group-Wise Registration of Medical Images. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2006. [Google Scholar]
- Vedaldi, A.; Soatto, S. A complexity-distortion approach to joint pattern alignment. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; pp. 1425–1432. [Google Scholar]
- Cox, M.; Sridharan, S.; Lucey, S.; Cohn, J. Least squares congealing for unsupervised alignment of images. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Cox, M.D. Unsupervised Alignment of Thousands of Images. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2010. [Google Scholar]
- Xue, Y.; Liu, X. Image congealing via efficient feature selection. In Proceedings of the 2012 IEEE Workshop on the Applications of Computer Vision (WACV), Breckenridge, CO, USA, 9–11 January 2012; pp. 185–192. [Google Scholar]
- Ni, W.; Vu, N.S.; Caplier, A. Unsupervised joint face alignment with gradient correlation coefficient. Pattern Anal. Appl. 2016, 19, 447–462. [Google Scholar] [CrossRef]
- Storer, M.; Urschler, M.; Bischof, H. Intensity-based congealing for unsupervised joint image alignment. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 1473–1476. [Google Scholar]
- Huang, G.B.; Jain, V.; Learned-Miller, E. Unsupervised joint alignment of complex images. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Huang, G.; Mattar, M.; Lee, H.; Learned-Miller, E.G. Learning to align from scratch. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 764–772. [Google Scholar]
- Huizinga, W.; Poot, D.H.; Guyader, J.M.; Klaassen, R.; Coolen, B.F.; van Kranenburg, M.; Van Geuns, R.; Uitterdijk, A.; Polfliet, M.; Vandemeulebroucke, J.; et al. PCA-based groupwise image registration for quantitative MRI. Med. Image Anal. 2016, 29, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Guyader, J.M.; Huizinga, W.; Poot, D.H.; van Kranenburg, M.; Uitterdijk, A.; Niessen, W.J.; Klein, S. Groupwise image registration based on a total correlation dissimilarity measure for quantitative MRI and dynamic imaging data. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Shrestha, A.; Mahmood, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]
- Sengupta, S.; Basak, S.; Saikia, P.; Paul, S.; Tsalavoutis, V.; Atiah, F.D.; Ravi, V.; Peters, R.A. A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends. arXiv 2019, arXiv:1905.13294. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep Learning for Visual Understanding. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Stajduhar, I.; Tomic, M.; Lerga, J. Mirroring quasi-symmetric organ observations for reducing problem complexity. Expert Syst. Appl. 2017, 85, 318–334. [Google Scholar] [CrossRef]
- Fu, Y.; Lei, Y.; Wang, T.; Curran, W.; Liu, T.; Yang, X. Deep Learning in Medical Image Registration: A Review. arXiv 2019, arXiv:1912.12318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, T.; Zheng, Y.; Sui, X.; Jiang, Y.; Cong, J.; Jiao, W.; Zhao, B. DGR-Net: Deep Groupwise Registration of Multispectral Images. In Proceedings of the International Conference on Information Processing in Medical Imaging, Hong Kong, China, 2–7 June 2019; pp. 706–717. [Google Scholar]
- Ahmad, S.; Fan, J.; Dong, P.; Cao, X.; Yap, P.T.; Shen, D. Deep Learning Deformation Initialization for Rapid Groupwise Registration of Inhomogeneous Image Populations. Front. Neuroinf. 2019, 13, 34. [Google Scholar]
- Ni, W.; Vu, N.S.; Caplier, A. Lucas–Kanade based entropy congealing for joint face alignment. Image Vis. Comput. 2012, 30, 954–965. [Google Scholar] [CrossRef]
- Nikolikos, N.; Psarakis, E.Z.; Lamprinou, N. A new Least Squares based congealing technique. Pattern Recognit. Lett. 2017, 95, 58–64. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, X.; Wheeler, F.W.; Tu, P. Automatic facial landmark labeling with minimal supervision. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 2097–2104. [Google Scholar]
- Baker, S.; Matthews, I. Lucas-kanade 20 years on: A unifying framework. Int. J. Comput. Vis. 2004, 56, 221–255. [Google Scholar] [CrossRef]
- Georghiades, A.S.; Belhumeur, P.N.; Kriegman, D.J. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 643–660. [Google Scholar] [CrossRef] [Green Version]
- Nikolikos, N.; Lamprinou, N.; Boile, A.; Psarakis, E. Multi-contrast MR Image/Volume Alignment via ECC Maximization. In Proceedings of the 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; pp. 1006–1011. [Google Scholar]
- Yang, F.; Huang, J.; Metaxas, D. Sparse shape registration for occluded facial feature localization. In Proceedings of the Face and Gesture, Santa Barbara, CA, USA, 21–25 March 2011; pp. 272–277. [Google Scholar]
- Yang, G.; Feng, Y.; Lu, H. Sparse error via reweighted Low Rank Representation for face recognition with various illumination and occlusion. Optik 2015, 126, 5376–5380. [Google Scholar] [CrossRef]
- Ding, L.; Martinez, A.M. Features versus context: An approach for precise and detailed detection and delineation of faces and facial features. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2022–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, S.Z.; Wang, Y.; Zhang, J. Self quotient image for face recognition. In Proceedings of the International Conference on Image Processing (ICIP), Singapore, 24–27 October 2004; pp. 1397–1400. [Google Scholar]
- Peng, Y.; Ganesh, A.; Wright, J.; Xu, W.; Ma, Y. RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2233–2246. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamprinou, N.; Nikolikos, N.; Psarakis, E.Z. Groupwise Image Alignment via Self Quotient Images. Sensors 2020, 20, 2325. https://doi.org/10.3390/s20082325
Lamprinou N, Nikolikos N, Psarakis EZ. Groupwise Image Alignment via Self Quotient Images. Sensors. 2020; 20(8):2325. https://doi.org/10.3390/s20082325
Chicago/Turabian StyleLamprinou, Nefeli, Nikolaos Nikolikos, and Emmanouil Z. Psarakis. 2020. "Groupwise Image Alignment via Self Quotient Images" Sensors 20, no. 8: 2325. https://doi.org/10.3390/s20082325
APA StyleLamprinou, N., Nikolikos, N., & Psarakis, E. Z. (2020). Groupwise Image Alignment via Self Quotient Images. Sensors, 20(8), 2325. https://doi.org/10.3390/s20082325