A Novel Machine Learning Aided Antenna Selection Scheme for MIMO Internet of Things
<p>The block diagram of the MLCNN-aided CBAS.</p> "> Figure 2
<p>Proposed architecture diagram of MLCNN.</p> "> Figure 3
<p>Channel capacity performance comparison between MLCNN-aided AS, LeNet-based AS and NBAS for <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>8</mn> <mo>,</mo> <mn>8</mn> <mo>;</mo> <mn>2</mn> <mo>,</mo> <mn>8</mn> <mo>)</mo> </mrow> </semantics></math> MIMO IoT system under correlation coefficients of <math display="inline"><semantics> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> <mi>r</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>50</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mn>0</mn> <mo>.</mo> <mn>95</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Channel capacity performance comparison between MLCNN-aided AS, LeNet-based AS and NBAS for <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>32</mn> <mo>,</mo> <mn>32</mn> <mo>;</mo> <mn>2</mn> <mo>,</mo> <mn>32</mn> <mo>)</mo> </mrow> </semantics></math> MIMO IoT system under correlation coefficients of <math display="inline"><semantics> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> <mi>r</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>50</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mn>0</mn> <mo>.</mo> <mn>95</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Channel capacity performance comparison between the proposed MLCNN in imperfect CSI and perfect CSI for <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>8</mn> <mo>,</mo> <mn>8</mn> <mo>;</mo> <mn>2</mn> <mo>,</mo> <mn>8</mn> <mo>)</mo> </mrow> </semantics></math> MIMO IoT system under correlation coefficients of <math display="inline"><semantics> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> <mi>r</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>50</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mn>0</mn> <mo>.</mo> <mn>95</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Channel capacity performance comparison between the proposed MLCNN in imperfect CSI and perfect CSI for <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>32</mn> <mo>,</mo> <mn>32</mn> <mo>;</mo> <mn>2</mn> <mo>,</mo> <mn>32</mn> <mo>)</mo> </mrow> </semantics></math> MIMO IoT system under correlation coefficients of <math display="inline"><semantics> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> <mi>r</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>50</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mn>0</mn> <mo>.</mo> <mn>95</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. System Model
3. CBAS Aided MIMO
3.1. Proposed MLCNN
3.1.1. Data Pre-Processing
- Generate M full MIMO channel matrices for training process.
- Take the magnitude of the full MIMO channel matrix elements as , where is the kth full channel matrix and .
- Normalize the amplitude information of to the range of by discrete standardization operation of the following transformation formula as [29]
3.1.2. Data Labeling
Algorithm 1 Multi-label generation process |
Input:M initialized binary multi-label vectors , M pre-processed full channel matrixs
|
Output:M multi-labeled vectors |
3.1.3. MLCNN Model
3.2. Complexity Analysis
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stankovic, J.A. Research Directions for the Internet of Things. IEEE Internet Things J. 2014, 1, 3–9. [Google Scholar] [CrossRef]
- Huang, K.-C.; Wang, Z. Terahertz terabit wireless communication. IEEE Microw. Mag. 2011, 12, 108–116. [Google Scholar] [CrossRef]
- Tang, J.; So, D.K.C.; Zhao, N.; Shojaeifard, A.; Wong, K. Energy Efficiency Optimization With SWIPT in MIMO Broadcast Channels for Internet of Things. IEEE Internet Things J. 2018, 5, 2605–2619. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Mallik, R.K.; Murch, R. Channel Magnitude-Based MIMO With Energy Detection for Internet of Things Applications. IEEE Internet Things J. 2019, 6, 9893–9907. [Google Scholar] [CrossRef]
- Heath, R.W.; Sandhu, S.; Paulraj, A. Antenna selection for spatial multiplexing systems with linear receivers. IEEE Commun. Lett. 2001, 5, 142–144. [Google Scholar] [CrossRef]
- Lu, D.; So, D.K.C. Performance based receive antenna selection for V-BLAST systems. IEEE Trans. Wirel. Commun. 2009, 8, 214–225. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, S.; Hanzo, L. Two-Tier Channel Estimation Aided Near-Capacity MIMO Transceivers Relying on Norm-Based Joint Transmit and Receive Antenna Selection. IEEE Trans. Wirel. Commun. 2015, 14, 122–137. [Google Scholar] [CrossRef]
- Hanzo, L.; Alamri, O.R.; El-Hajjar, M.; Wu, N. Near-Capacity MultiFunctional MIMO Systems: Sphere-Packing, Iterative Detection and Cooperation; Wiley: Chichester, UK, 2009. [Google Scholar]
- Shiu, D.S.; Foschini, G.J.; Gans, M.J.; Kahn, J.M. Fading correlation and its effect on the capacity of multi-element antenna systems. IEEE Trans. Commun. 2000, 48, 502–513. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Lee, J.H. Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole. IEEE Trans. Inf. Theory 2003, 49, 2636–2647. [Google Scholar] [CrossRef] [Green Version]
- Chiani, M.; Win, M.Z.; Zanella, A. On the capacity of spatially correlated MIMO Rayleigh fading channels. IEEE Trans. Inf. Theory 2003, 49, 2363–2371. [Google Scholar] [CrossRef] [Green Version]
- Gharavi-Alkhansari, M.; Gershman, A.B. Fast antenna subset selection in MIMO systems. IEEE Trans. Signal Process. 2004, 52, 339–347. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, C.; Malik, W.Q.; O’Brien, D.C.; Edwards, D.J. Receive antenna selection for MIMO systems over correlated fading channels. IEEE Trans. Wirel. Commun. 2009, 8, 4393–4399. [Google Scholar] [CrossRef]
- Blum, R.S.; Xu, Z.; Sfar, S. A near-optimal joint transmit and receive antenna selection algorithm for MIMO systems. In Proceedings of the 2009 IEEE Radio and Wireless Symposium, San Diego, CA, USA, 18–22 January 2009; pp. 554–557. [Google Scholar]
- Sanayei, S.; Nosratinia, A. Capacity maximizing algorithms for joint transmit-receive antenna selection. In Proceedings of the Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2004; pp. 1773–1776. [Google Scholar]
- Chen, C. A computationally efficient near-optimal algorithm for capacity-maximization based joint transmit and receive antenna selection. IEEE Commun. Lett. 2010, 14, 402–404. [Google Scholar] [CrossRef]
- Karamalis, P.D.; Skentos, N.D.; Kanatas, A.G. Selecting array configurations for MIMO systems: An evolutionary computation approach. IEEE Trans. Wirel. Commun. 2004, 3, 1994–1998. [Google Scholar] [CrossRef]
- Lu, H.; Fang, W. Joint Transmit/Receive Antenna Selection in MIMO Systems Based on the Priority-Based Genetic Algorithm. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 588–591. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, H. Fast MIMO Transmit Antenna Selection Algorithms: A Geometric Approach. IEEE Commun. Lett. 2006, 10, 754–756. [Google Scholar] [CrossRef]
- Joung, J. Machine learning-based antenna selection in wireless communications. IEEE Commun. Lett. 2016, 20, 2241–2244. [Google Scholar] [CrossRef]
- Yao, R.; Zhang, Y.; Qi, N.; Tsiftsis, T.A.; Liu, Y. Machine Learning-Based Antenna Selection in Untrusted Relay Networks. In Proceedings of the 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 22–24 June 2019; pp. 323–328. [Google Scholar]
- Cai, J.X.; Zhong, R.; Li, Y. Antenna selection for multiple-input multiple-output systems based on deep convolutional neural networks. PLoS ONE 2019, 14, e0215672. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. NIPS Curran Associates Inc. 2012, 25, 1–9. [Google Scholar] [CrossRef]
- Min, L.; Chen, Q.; Yan, S. Network In Network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Chen, S.; Hanzo, L. Reduced-Complexity Near-Capacity Joint Channel Estimation and Three-Stage Turbo Detection for Coherent Space-Time Shift Keying. IEEE Trans. Commun. 2013, 61, 1902–1913. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.C.Y. Estimate of channel capacity in Rayleigh fading environment. IEEE Trans. Veh. Technol. 2002, 39, 187–189. [Google Scholar] [CrossRef]
- Sola, J.; Sevilla, J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans. Nucl. Sci. 1997, 44, 1464–1468. [Google Scholar] [CrossRef]
- Koval, S.I. Data preparation for neural network data analysis. In Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow, Russia, 29 January–1 February 2018; pp. 898–901. [Google Scholar]
- Boureau, Y.L.; Ponce, J.; LeCun, Y. A Theoretical Analysis of Feature Pooling in Visual Recognition. In Proceedings of the ICML 2010, Haifa, Israel, 21–25 June 2010; pp. 111–118. [Google Scholar]
- He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5353–5360. [Google Scholar]
Optimal Antenna Indices Combination | Multiple-Label | Single-Label |
---|---|---|
1100 | 100000 | |
1010 | 010000 | |
1001 | 001000 | |
0110 | 000100 | |
0101 | 000010 | |
0011 | 000001 |
Layer | Architecture |
---|---|
Input layer | Pre-processed full CSI matrix |
Convolution layer1 | data_format=’channels_first’ |
batch_input_shape = (None, 1, , ) | |
filters = 16 | |
kernel_size = (2,2) | |
strides = 1 | |
padding = ’same’ | |
Activation (’relu’) | |
Convolution layer2 | data_format=’channels_first’ |
filters = 16 | |
kernel_size = (2,2) | |
strides = 1 | |
padding = ’same’ | |
Activation (’relu’) | |
Full connection layer | Flatten function |
neurons | |
Activation (’relu’) | |
Dropout () | |
Output layer | neurons |
Activation(’sigmoid’) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, W.; Zhang, P.; Xu, J.; Luo, H.; Huang, L.; Zhong, S. A Novel Machine Learning Aided Antenna Selection Scheme for MIMO Internet of Things. Sensors 2020, 20, 2250. https://doi.org/10.3390/s20082250
An W, Zhang P, Xu J, Luo H, Huang L, Zhong S. A Novel Machine Learning Aided Antenna Selection Scheme for MIMO Internet of Things. Sensors. 2020; 20(8):2250. https://doi.org/10.3390/s20082250
Chicago/Turabian StyleAn, Wannian, Peichang Zhang, Jiajun Xu, Huancong Luo, Lei Huang, and Shida Zhong. 2020. "A Novel Machine Learning Aided Antenna Selection Scheme for MIMO Internet of Things" Sensors 20, no. 8: 2250. https://doi.org/10.3390/s20082250
APA StyleAn, W., Zhang, P., Xu, J., Luo, H., Huang, L., & Zhong, S. (2020). A Novel Machine Learning Aided Antenna Selection Scheme for MIMO Internet of Things. Sensors, 20(8), 2250. https://doi.org/10.3390/s20082250