Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens
Abstract
:1. Introduction
2. Criteria for Selection of Nanomaterials for use in Biosensors
3. Various Nanomaterials used for Sensor Fabrication with Special Reference to Food Borne Pathogens
3.1. Carbon Nanotubes
3.2. Gold Nanoparticles
3.3. Quantum Dots
3.4. Magnetic NPs beads as Label in Biosensor-based Detection
3.5. Dendrimers
3.6. Silicon Nanomaterials
3.7. Graphene-based Nanomaterials
3.8. Conducting Polymers
4. Current Status and Future Prospects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vo-Dinh, T.; Cullum, B.M.; Stokes, D.L. Nanosensors and biochips: Frontiers in biomolecular diagnostics. Sens. Actuators B Chem. 2001, 74, 2–11. [Google Scholar] [CrossRef]
- Jain, K.K. Nanodiagnostics: Application of nanotechnology in molecular diagnostics. Expert Rev. Mol. Diagn. 2003, 3, 153–161. [Google Scholar] [CrossRef]
- Haruyama, T. Micro- and nanobiotechnology for biosensing cellular responses. Adv. Drug Deliv. Rev. 2003, 55, 393–401. [Google Scholar] [CrossRef]
- World Health Organization. Estimating the Burden of Foodborne Diseases. Available online: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases (accessed on 21 January 2020).
- Fratamico, P.M.; Gehring, A.G.; Karns, J.; Van Kessel, J. Detecting pathogens in cattle and meat. In Improving the Safety of Fresh Meat; EditorSofos, J., Ed.; Woodhead Publishing: Cambridge, UK, 2005; pp. 24–55. [Google Scholar]
- Lazcka, O.; Campo, F.J.D.; Muňoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, A.K. Biosensors and bio-based methods for the separation and detection of foodborne pathogens. Adv. Food Nutr. Res. 2008, 54, 1–44. [Google Scholar] [PubMed]
- Kalpana, S.R.; Anshul, S.; Rao, N.H. Nanotechnology in food processing sector-An assessment of emerging trends. J. Food Sci. Technol. 2013, 50, 831–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabig-Ciminska, M. Developing nucleic acid-based electrical detection systems. Microb. Cell Fact. 2006, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, M.A.; Bokhari, S.H.A. Gold nanoparticle based microbial detection and identification. J. Biomed. Nanotechnol. 2011, 7, 229–237. [Google Scholar] [CrossRef]
- Doria, G.; Conde, J.; Veigas, B.; Giestas, L.; Almeida, C.; Assuncao, M.; Joao, R.; Pedro, V.B. Noble metal nanoparticles for biosensing applications. Sensors 2012, 12, 1657–1687. [Google Scholar] [CrossRef]
- Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold Nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; Heer, W.A.D. Carbon Nanotubes-the route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014, 9, 393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huan, C.; Shu-Qing, S. Silicon nanoparticles: Preparation, properties, and applications. Chin. Phys. B 2014, 23, 088102. [Google Scholar]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced grapheme oxide and their nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Klajnert, B.; Bryszewska, M. Dendrimers: Properties and applications. Acta Biochim. Pol. 2001, 48, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Singh, S.; Yadav, B.C. Conducting polymers: Synthesis, properties and applications. Int. Adv. Res. J. Sci. Eng. Technol. 2015, 2, 110–124. [Google Scholar]
- Gerwen, P.V.; Laureyn, W.; Laureys, W.; Huyberechts, G.; Beecka, M.O.D.; Baert, K.; Suls, J.; Sansen, W.; Jacobs, P.; Hermans, L.; et al. Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens. Actuators B Chem. 1998, 49, 73–80. [Google Scholar] [CrossRef]
- Pak, S.C.; Penrose, W.; Hesketh, P.J. An ultrathin platinum film sensor to measure biomolecular binding. Biosens. Bioelectron. 2001, 16, 371–379. [Google Scholar] [CrossRef]
- Bhushan, B. Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron. Eng. 2007, 84, 387–412. [Google Scholar] [CrossRef]
- Zeng, S.; Yong, K.T.; Roy, I.; Dinh, X.Q.; Yu, X.; Luan, F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011, 6, 491–506. [Google Scholar] [CrossRef]
- Nath, N.; Chilkoti, A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 2002, 74, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Haes, A.J.; Duyne, R.P.V. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596–10604. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, Q.; Li, Y.; Cal, X.; Li, W. The interaction and toxicity of multi-walled carbon nanotubes with Stylonychiamytilus. J. Nanosci. Nanotechnol. 2006, 6, 1357–1364. [Google Scholar] [CrossRef]
- Fujitani, T.; Ohyama, K.; Hirose, A.; Nishimura, T.; Nakae, D.; Ogata, A. Teratogenicity of multi-wall carbon nanotube (MWCNT) in ICR mice. J. Toxicol. Sci. 2012, 37, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Bi, J.; Zhang, X.; Wang, J.; Wang, J.; Liu, P.; Li, Z.; Wu, W. Damaging effects of multi- walled carbon nanotubes on pregnant mice with different pregnancy times. Sci. Rep. 2014, 4, 4352. [Google Scholar] [CrossRef] [Green Version]
- Vlaanderen, J.; Pronk, A.; Rothman, N.; Hildesheim, A.; Silverman, D.; Hosgood, H.D.; Spaan, S.; Kuijpers, E.; Godderis, L.; Hoet, P.; et al. A cross-sectional study of changes in markers of immunological effects and lung health due to exposure to multi-walled carbon nanotubes. Nanotoxicology 2017, 11, 395–404. [Google Scholar] [CrossRef]
- Pietroiusti, A.; Massimiani, M.; Fenoglio, I.; Colonna, M.; Valentini, F.; Palleschi, G.; Camaioni, A.; Magrini, A.; Siracusa, G.; Bergamaschi, A.; et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano 2011, 5, 4624–4633. [Google Scholar] [CrossRef] [Green Version]
- Philbrook, N.A.; Walker, V.K.; Afrooz, A.R.; Saleh, N.B.; Winn, L.M. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1mice. Reprod. Toxicol. 2011, 32, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Karathanasis, A.D. Subsurface migration of copper and zinc mediated by soil colloids. Soil Sci. Soc. Am. J. 1999, 63, 830–838. [Google Scholar] [CrossRef]
- Chu, M.; Wu, Q.; Yang, H.; Yuan, R.; Hou, S.; Yang, Y.; Zou, Y.; Xu, S.; Xu, K.; Ji, A.; et al. Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 2010, 6, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.D.; Wu, H.Y.; Wu, D.; Wang, Y.Y.; Chang, J.H.; Zhai, Z.B.; Meng, A.M.; Liu, P.X.; Zhang, L.A.; Fan, F.Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomed. 2010, 5, 771–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaitkuviene, A.; Kaseta, V.; Voronovic, J.; Ramanauskaite, G.; Biziuleviciene, G.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization. J. Hazard. Mater. 2013, 250, 167–174. [Google Scholar] [CrossRef]
- Sharifabadi, M.A.; Koohi, M.K.; Zayerzadeh, E.; Hablolvarid, M.H.; Hassan, J.; Seifalian, A.M. In vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int. J. Nanomed. 2018, 13, 4757–4769. [Google Scholar] [CrossRef] [Green Version]
- Awaad, A. Histopathological and immunological changes induced by magnetite nanoparticles in the spleen, liver and genital tract of mice following intravaginal instillation. J. Basic Appl. Zool. 2015, 71, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.P.; Lyng, F.M.; Garcia, A.; Davoren, M.; Byrne, H.J. Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells. Toxicol. Appl. Pharmacol. 2010, 248, 259–268. [Google Scholar] [CrossRef] [Green Version]
- University of Wollongong. Available online: https://documents.uow.edu.au/content/groups/public/@web/@ohs/documents/doc/uow136509.pdf (accessed on 5 October 2019).
- Department of Science & Technology. Available online: http://nanomission.gov.in/What_new/Draft_Guidelines_and_Best_Practices.pdf (accessed on 4 October 2019).
- Concordia University. Available online: https://www.concordia.ca/content/dam/concordia/services/safety/docs/EHS-DOC-035_NanomaterialsSafetyGuidelines.pdf (accessed on 2 October 2019).
- European Commission. Available online: https://osha.europa.eu/en/legislation/guidelines/guidance-protection-health-and-safety-workers-potential-risks-related (accessed on 2 October 2019).
- World Health Organization. Available online: https://apps.who.int/iris/bitstream/handle/10665/259671/9789241550048-eng.pdf?sequence=1 (accessed on 7 October 2019).
- Food and Drug Administration. Available online: https://www.fda.gov/media/83957/download (accessed on 4 October 2019).
- Pandit, S.; Dasgupta, D.; Dewan, N.; Ahmed, P. Nanotechnology based biosensors and its application. PharamInnov. J. 2016, 5, 18–25. [Google Scholar]
- Weber, J.E.; Pillai, S.; Rama, M.K.; Kumar, A.; Singh, S.R. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode. Mater. Sci. Eng. C 2011, 31, 821–825. [Google Scholar] [CrossRef]
- Hasan, M.R.; Pulingam, T.; Appaturi, J.N.; Zifruddin, A.N.; The, S.J.; Lim, T.W.; Ibrahim, F.; Leo, B.F.; Thong, K.L. Carbon nanotube-based aptasensor for sensitive electrochemical detection of whole-cell Salmonella. Anal. Biochem. 2018, 554, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Kim, C.T.; Kim, J.H.; Chung, J.H.; Lee, H.G.; Jun, S. Single walled carbon nanotube-based junction biosensor for detection of Escherichia coli. PLoS ONE 2014, 9, e105767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperling, R.A.; Rivera, P.G.; Zhang, F.; Zanella, M.; Parak, W.J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wang, E. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 2007, 598, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Electrochemical DNA biosensors based on gold nanoparticles/cysteamine/poly (glutamic acid) modified electrode. Am. J. Biomed. Sci. 2007, 1, 115–125. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chen, S.H.; Chuang, Y.C.; Lu, Y.C.; Shen, T.Y.; Chang, C.A.; Lin, C.S. Disposable amperometricimmunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7. Biosens. Bioelectron. 2008, 23, 1832–1837. [Google Scholar] [CrossRef]
- Hong, S.A.; Kwon, J.; Kim, D.; Yang, S. A rapid, sensitive and selective electrochemical biosensor with concanavalin A for the preemptive detection of norovirus. Biosens. Bioelectron. 2015, 64, 338–344. [Google Scholar] [CrossRef]
- Davis, D.; Guo, X.; Musavi, L.; Lin, C.S.; Chen, S.H.; Wu, V.C.H. Gold nanoparticle-modified carbon electrode biosensor for the detection of Listeria monocytogenes. Ind. Biotechnol. 2013, 9, 31–36. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, X.; Liu, Y.; Duan, N.; Wu, S.; Wang, Z.; Xu, B. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens. Bioelectron. 2015, 15, 872–877. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Crivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Kang, Z.; Liu, Y.; Lee, S.T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253. [Google Scholar] [CrossRef]
- Ding, C.; Zhu, A.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivobioimaging. Acc. Chem. Res. 2014, 47, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, Y.; Zhang, T.; Jiang, Y. Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe. Anal. Methods 2015, 7, 1701–1706. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Y.; Wu, Y.; Weng, B.; Liu, Y.; Lu, Z.; Li, C.M.; Yu, C. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB 1. Biosens. Bioelectron. 2016, 78, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ye, M.; Chao, Q.; Jia, N.; Ge, Y.; Shen, H. Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J. Agric. Food Chem. 2008, 57, 517–524. [Google Scholar] [CrossRef]
- Mandal, T.K.; Parvin, N. Rapid detection of bacteria by carbon quantum dots. J. Biomed. Nanotechnol. 2011, 7, 846–848. [Google Scholar] [CrossRef]
- Liu, C.Y.; Jia, Q.J.; Yang, C.H.; Qiao, R.R.; Jing, L.H.; Wang, L.B.; Xu, C.L.; Gao, M.Y. Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal. Chem. 2011, 83, 6778–6784. [Google Scholar] [CrossRef]
- Quesada-González, D.; Merkoçi, A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 2015, 73, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Aguilar, Z.P.; Xu, H.; Lai, W.; Xiong, Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens. Bioelectron. 2016, 75, 166–180. [Google Scholar] [CrossRef]
- Ren, W.; Cho, H.; Zhou, Z.; Irudayaraj, J. Ultrasensitive detection of microbial cells usingmagnetic focus enhanced lateral flow sensors. Chem. Commun. 2016, 52, 4930–4933. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.H.; Lei, C.Y.; Fu, Y.C.; Li, Y.B. Rapid and sensitive detection of E. coli O157:H7 based on antimicrobial peptide functionalized magnetic nanoparticles and urease-catalyzed signal amplification. Anal. Methods 2017, 9, 5204–5210. [Google Scholar] [CrossRef]
- Wang, D.B.; Tian, B.; Zhang, Z.P.; Wang, X.Y.; Fleming, J.; Bi, L.J.; Yang, R.F.; Zhang, X.E. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on “road closure”. Biosens. Bioelectron. 2015, 67, 608–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suaifan, G.; Alhogail, S.; Zourob, M. Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157:H7. Biosens. Bioelectron. 2017, 92, 702–708. [Google Scholar] [CrossRef]
- Xia, S.; Yu, Z.; Liu, D.; Xu, C.; Lai, W. Developing a novel immunochromatographic test strip with gold magnetic bifunctional nanobeads (GMBN) for efficient detection of Salmonella choleraesuis in milk. Food Cont. 2016, 59, 507–512. [Google Scholar] [CrossRef]
- Bahadir, E.B.; Sezgintürk, M.K. Poly (amidoamine) (PAMAM): An emerging material for electrochemical bio (sensing) applications. Talanta 2016, 148, 427–438. [Google Scholar] [CrossRef]
- Shiddiky, M.J.A.; Rahman, M.A.; Shim, Y.B. Hydrazine-catalyzed ultrasensitive detection of DNA and proteins. Anal. Chem. 2007, 79, 6886–6890. [Google Scholar] [CrossRef]
- Shiddiky, M.J.A.; Rahman, M.A.; Cheol, C.S.; Shim, Y.B. Fabrication of disposable sensors for biomolecule detction using hydrazine electrocatalyst. Anal. Biochem. 2008, 379, 170–175. [Google Scholar] [CrossRef]
- Castillo, G.; Spinella, K.; Poturnayová, A.; Šnejdárková, M.; Mosiello, L.; Hianik, T. Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Cont. 2015, 52, 9–18. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Da, P.; Xu, M.; Wu, H.; Zheng, G. Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater. 2013, 25, 5177–5195. [Google Scholar] [CrossRef]
- Nishimura, H.; Ritchie, K.; Kasai, R.S.; Goto, M.; Morone, N.; Sugimura, H.; Tanaka, K.; Sase, I.; Yoshimura, A.; Nakano, Y.; et al. Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. J. Cell Biol. 2013, 202, 967–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.H.; Hütter, J.; Hsu, C.W.; Tanaka, H.; Varela-Aramburu, S.; Cola, L.; Lepenies, B.; Seeberger, P.H. Analysis of carbohydrate-carbohydrate interactions using sugar-functionalized silicon nanoparticles for cell imaging. Nano Lett. 2016, 16, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Gu, L.; von-Maltzahn, G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009, 8, 331–336. [Google Scholar] [CrossRef]
- Chiappini, C.; De-Rosa, E.; Martinez, J.O.; Liu, X.; Steele, J.; Stevens, M.M.; Tasciotti, E. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 2015, 14, 532–539. [Google Scholar] [CrossRef]
- Phillips, E.; Penate-Medina, O.; Zanzonico, P.B.; Carvajal, R.D.; Mohan, P.; Ye, Y.; Humm, J.; Gönen, M.; Kalaigian, H.; Schöder, H.; et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 2014, 6, 260ra149. [Google Scholar] [CrossRef] [Green Version]
- Mathew, F.P.; Alocilja, E.C. Porous silicon-based biosensor for pathogen detection. Biosens. Bioelectron. 2005, 20, 1656–1661. [Google Scholar] [CrossRef]
- Zhang, D.; Alocilja, E.C. Characterization of nanoporous silicon-based DNA biosensor for the detection of Salmonella enteritidis. IEEE Sens. J. 2008, 8, 775–780. [Google Scholar] [CrossRef]
- Pumera, M. Graphene in biosensing. Mater. Today 2011, 14, 308–315. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777. [Google Scholar] [CrossRef]
- Kasry, A.; Ardakani, A.A.; Tulevski, G.S.; Menges, B.; Copel, M.; Vyklicky, L. Highly efficient fluorescence quenching with graphene. J. Phys. Chem. C 2012, 116, 2858–2862. [Google Scholar] [CrossRef]
- Wu, X.; Xing, Y.; Zeng, K.; Huber, K.; Zhao, J.X. Study of fluorescence quenching ability of graphene oxide with a layer of rigid and tunable silica spacer. Langmuir 2018, 34, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Batır, G.G.; Arık, M.; Caldıran, Z.; Turut, A.; Aydogan, S. Synthesis and characterization of reduced graphene oxide/rhodamine 101 (rGO-Rh101) nanocomposites and their heterojunction performance in rGORh101/p-Si device configuration. J. Electron. Mater. 2018, 47, 329–336. [Google Scholar] [CrossRef]
- Tiwari, I.; Singh, M.; Pandey, C.M.; Sumana, G. Electrochemical genosensor based on graphene oxide modified iron oxide-chitosan hybrid nanocomposite for pathogen detection. Sens. Actuators B Chem. 2015, 206, 276–283. [Google Scholar] [CrossRef]
- Pandey, A.; Gurbuz, Y.; Ozguz, V.; Niazi, J.H.; Qureshi, A. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7. Biosens. Bioelectron. 2017, 91, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Kumar, V.; Ali, M.A.; Solanki, P.R.; Srivastava, A.; Sumana, G.; Saxena, P.S.; Joshi, A.G.; Malhotra, B.D. Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale 2013, 5, 3043–3051. [Google Scholar] [CrossRef]
- Srivastava, S.; Abraham, S.; Singh, C.; Ali, M.A.; Srivastava, A.; Sumana, G.; Malhotra, B.D. Protein conjugated carboxylatedgold@reduced graphene oxide for aflatoxin B1 detection. RSC Adv. 2015, 5, 5406–5414. [Google Scholar] [CrossRef]
- Faridbod, F.; Norouzi, P.; Dinarvand, R.; Ganjali, M.R. Developments in the field of conducting and non-conducting polymer based potentiometric membrane sensors for ions over the past decade. Sensors 2008, 8, 2331–2412. [Google Scholar] [CrossRef] [Green Version]
- Geise, R.J.; Adams, J.M.; Barone, N.J.; Yacynych, A.M. Electropolymerized films to prevent interferences and electrode fouling in biosensors. Biosens. Bioelectron. 1991, 6, 151–160. [Google Scholar] [CrossRef]
- Oh, W.H.; Kwon, O.S.; Jang, J. Conducting polymer nanomaterials for biomedical applications: Cellular interfacing and biosensing. Polym. Rev. 2013, 53, 407–442. [Google Scholar] [CrossRef]
- Malhotra, B.D.; Chaubey, A.; Singh, S.P. Prospects of conducting polymers in biosensors. Anal. Chim. Acta 2006, 578, 59–74. [Google Scholar] [CrossRef]
- Tully, E.; Higson, S.P.; Kennedy, R.O. The development of a ‘labeless’ immunosensor for the detection of Listeria monocytogenes cell surface protein, internalin B. Biosens. Bioelectron. 2008, 23, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Muhammad-Tahir, Z.; Alocilja, E.C. Fabrication of a disposable biosensor for Escherichia coli O157:H7 detection. IEEE Sens. J. 2003, 3, 345–351. [Google Scholar] [CrossRef]
- Muhammad-Tahir, Z.; Alocilja, E.C. A disposable biosensor for pathogen detection in fresh produce samples. Biosyst. Eng. 2004, 88, 145–151. [Google Scholar] [CrossRef]
- Sheikhzadeh, E.; Chamsaz, M.; Turner, A.P.F.; Jager, E.W.H.; Beni, V. Label-free impedimetric biosensor for Salmonella typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosens. Bioelectron. 2016, 80, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Nordin, N.; Yusof, N.A.; Abdullah, J.; Radu, S.; Hushiarian, R. A simple, portable, electrochemical biosensor to screen shellfish for Vibrio parahaemolyticus. AMB Express 2017, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Nordin, N.; Yusof, N.A.; Radu, S.; Hushiarian, R. Development of an electrochemical DNA biosensor to detect a foodborne pathogen. J. Vis. Exp. 2018, 136, e56585. [Google Scholar] [CrossRef] [Green Version]
- Suaifan, G.A.R.Y.; Alhogail, S.; Zourob, M. Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens. Bioelectron. 2017, 90, 230–237. [Google Scholar] [CrossRef]
- Viswanathan, S.; Rani, C.; Ho, J.A. Electrochemical immunosensor for multiplexed detection of food-borne pathogens using nanocrystal bioconjugates and MWCNT screen-printed electrode. Talanta 2012, 94, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Zhao, H.; Xu, M.; Ma, Q.; Ai, S. A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chem. 2013, 141, 1980–1986. [Google Scholar] [CrossRef]
- Byeon, H.M.; Vodyanoy, V.J.; Oh, J.H.; Kwon, J.H.; Parka, M.K. Lytic phage-based magnetoelastic biosensors for on-site detection of methicillin-resistant Staphylococcus aureus on spinach leaves. J. Electrochem. Soc. 2015, 162, B230–B234. [Google Scholar] [CrossRef]
- Minett, A.I.; Barisci, J.N.; Wallace, G.G. Coupling conducting polymers and mediated electrochemical responses for the detection of Listeria. Anal. Chim. Acta 2003, 475, 37–45. [Google Scholar] [CrossRef]
- Sun, Y.; Duan, N.; Ma, P.; Liang, Y.; Zhu, X.; Wang, Z. Colorimetric aptasensor based on truncated aptamer and trivalent DNAzyme for Vibrio parahemolyticus determination. J. Agric. Food Chem. 2019, 67, 2313–2320. [Google Scholar] [CrossRef]
- Chen, R.; Huang, X.; Li, J.; Shan, S.; Lai, W.; Xiong, Y. A novel fluorescence immunoassay for the sensitive detection of Escherichia coli O157:H7 in milk based on catalase-mediated fluorescence quenching of CdTe quantum dots. Anal. Chim. Acta 2016, 947, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Wu, W.; Lu, X.; Zeng, L. Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. Biosens. Bioelectron. 2014, 56, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, S.P.; Mauer, L.J.; Deb-Roy, C.; Irudayaraj, J. Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes. Anal. Chem. 2009, 81, 2840–2846. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, S.; Mao, Y.; Fang, Z.; Lu, X.; Zeng, L. A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification. Anal. Chim. Acta 2014, 861, 62–68. [Google Scholar] [CrossRef]
- Houhoula, D.P.; Charvalos, E.; Konteles, S.; Koussissis, S.; Lougovois, V.; Papaparaskevas, J. A simple gold nanoprobe assay for the identification of Staphylococcus aureus, Listeria monocytogenes and Salmonella enteritidis in food specimens. J. Food Res. 2017, 6, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Chinnappan, R.; AlAmer, S.; Eissa, S.; Rahamn, A.A.; Salah, K.M.A.; Zourob, M. Fluorometricgrapheneoxide-baseddetection of Salmonellaenteritis using a truncatedDNAaptamer. Mikrochim. Acta 2017, 185, 61. [Google Scholar] [CrossRef]
- Khang, J.; Kim, D.; Chung, K.W.; Lee, J.H. Chemiluminescent aptasensor capable of rapidly quantifying Escherichia coli O157:H7. Talanta 2016, 147, 177–183. [Google Scholar] [CrossRef]
- Mak, A.C.; Osterfeld, S.J.; Yu, H.; Wang, S.X.; Davis, R.W.; Jejelowo, O.A.; Pourmand, N. Sensitive giant magnetoresistive-based immunoassay for multiplex mycotoxin detection. Biosens. Bioelectron. 2010, 25, 1635–1639. [Google Scholar] [CrossRef] [Green Version]
- Mollasalehi, H.; Yazdanparast, R. An improved non-crosslinking gold nanoprobe-NASBA based on 16S rRNA for rapid discriminative bio-sensing of major salmonellosis pathogens. Biosens. Bioelectron. 2013, 47, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Oaew, S.; Charlermroj, R.; Pattarakankul, T.; Karoonuthaisiri, N. Gold nanoparticles/horseradish peroxidase encapsulated polyelectrolyte nanocapsule for signal amplification in Listeria monocytogenes detection. Biosens. Bioelectron. 2012, 34, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Rusinek, R.; Gancarz, M.; Krekora, M.; Nawrocka, A. A Novel method for generation of a fingerprint using electronic nose on the example of Rapeseed spoilage. J. Food Sci. 2019, 84, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusinek, R.; Gancarz, M.; Nawrocka, A. Application of an electronic nose with novel method for generation of smellprints for testing the suitability for consumption of wheat bread during 4-day storage. LWT Food Sci. Technol. 2020, 117, 108665. [Google Scholar] [CrossRef]
- Gupta, S.; Kaushal, A.; Kumar, A.; Kumar, D. Ultrasensitive transglutaminase based nanosensor for early detection of celiac disease in human. Int. J. Biol. Macromol. 2017, 5, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Saini, K.; Kaushal, A.; Gupta, S.; Kumar, D. Rapid detection of Salmonella enterica in raw milk samples using Stn gene-based biosensor. 3 Biotech 2019, 9, 425. [Google Scholar] [CrossRef]
- Saini, K.; Kaushal, A.; Gupta, S.; Kumar, D. Multiplexed Stn and PlcA based specific genetic marker for early detection of Salmonella enterica and Listeria monocytogenes in milk samples. Ann. Univ. Dunarea Jos Galati 2019, 43, 9–20. [Google Scholar] [CrossRef]
Nanomaterials | Physical Properties | Synthesis | Applications | Ref |
---|---|---|---|---|
Gold | Redox activity Surface-enhanced Raman scattering (SERS) Surface Plasmon resonance (SPR) Fluorescence quenching | Solution-based approaches | Sensing: electronic devices and electrochemical sensing Therapeutics: drugs delivery Imaging: cell imaging, target tumor specific antigens | [12] |
Carbon Nanostructures | Equilibrium structure Lattice constant viz lattice parameter, density, interlayer spacing Optical properties viz fundamental gap Electrical transport Thermal transport Elastic behaviour | Chemical vapour deposition technique Laser- ablation technique Carbon arc-discharge technique | Biomedical applications: artificial implants, tissue engineering, cancer cell identification and drugs and genes delivery Electrochemical devices: supercapacitors and electromechanical actuators used in robots and hybrid electric vehicles Hydrogen storage: fuel cells that powers electric vehicles and laptop computers Field emission devices: lamps, gas discharge tubes, microwave generators Sensors and Probes | [13,14] |
Magnetic Nanoparticles | Magnetic effect due to spinning electric- charged particle Critical size depends on magnetic saturation, strength of crystal, exchange forces, surface energy, and shape of the particles Zero coercivity | Co-precipitation Microemulsion Thermal decomposition Solvothermal Sonochemic Microwave assisted Chemical vapour deposition Combustion synthesis Carbon arc Laser pyrolysis | Industrial applications: used as synthetic pigments in ceramics, paints and porcelain Biomedical applications: used in vivo to destroy the pathological cells by hyperthermia, drugs delivery, NMR imaging, bioseparation of specific biological entities from their native environment Environmental applications: removal of organic and inorganic pollutants | [15] |
Silicon Nanomaterials | Optical properties viz bright emission, photostability, size dependent and wavelength tuneable luminescence and long fluorescence Electronic properties viz quantum confinement, type of dopant, composition of material, surface functionalization and post treatment | Pulsed laser ablation Heating degradation Ball milling Chemical synthesis Electrochemical etching | Light- emitting applications: multicolour silicon-based light emission diodes Energy and Electronic fields: lithium battery, solar cell battery, Microwave assisted filed-effect transistor Photocatalysts | [16] |
Graphene oxide | Mechanical properties to enhance the strength Electrical properties include high electron mobility and electrical conductivity Thermal properties | Bottom-up approach Top-down approach | Membranes and Coatings: gas transport, water treatment Stimuli-responsive materials: humidity actuation, thermal/light responsive actuation, electrochemical actuation, multi-stimuli actuation Corrosion resistance Energy storage: lithium ions batteries, supercapacitors | [17] |
Dendrimers | Low viscosity High solubility and miscibility due to many chain ends High surface areas in relation to volume Encapsulate guest molecule in the macromolecular interior due to their globular shape | Divergent method Convergent method | Biomedical field: drugs and genes delivery, photodynamic therapy, enhancing drug solubility Water purification Analytical devices | [18,19] |
Conducting polymers | High conductivity viz. reversible redox Nonlinear optical properties Electric properties Microwave absorbing properties Wettability | Chemical method Electrochemical method Photochemical method Concentrated emulsion method Inclusion method Plasma polymerization Pyrolysis method | Electronic devices: light emitting diodes, solar cells Electromagnetic shielding materials Microwave absorbing materials Rechargeable batteries Sensors | [20] |
Nanomaterials | Toxic Effects | Dosage Level | Ref |
---|---|---|---|
Multiwalled Carbon nanotubes | Damage to micronucleus, macronucleus, and membrane was observed in Stylonychiamytilus Decrease in maternal, fetal weight and skeletal malformation in mouse model Increased abortion rate in mouse model Increase in C-C motif ligand 20, basic fibroblast growth factor, and soluble IL-1 receptor II in human subjects | 1 mg/ml 100.8–162.5 µg/mouse 4–20 mg/kg 45 µg/m3 | [28,29,30,31] |
Singlewalled Carbon nanotubes | Fetal morphological abnormalities in mouse model Increased resorption rate in mouse model | 0.1–30 µg/mouse 10 mg/kg | [32,33] |
Quantum dots (Cadmium telluride) | Reduction in phagocytic activity and hemocyte viability in the hemolymph of Elliptio complanata Reduced survival rate in mouse model | 8 mg/L 20–125 µg/mouse | [34,35] |
Gold NPs | Induced decreases in body weight, red blood cells, and hematocrit in mouse model | 550–2200 µg/kg | [36] |
Polypyrrole | Cytotoxic for human jurkat cell line, mouse embryonic fibroblasts and mouse hepatoma cell line (MH-22A) | >19.4 µg/mL | [37] |
Graphene oxide | Toxic for the liver, kidney, spleen, lung, intestine, and brain in rat model | 500 mg/kg | [38] |
Magnetite | Acute inflammation in the liver and tarsal joints, induced the vaginal secretion IgA, Bcl-2 reactivity in the hepatocytes in mice model | 45 mg/mouse | [39] |
Dendrimers (PAMAM) | Increases in lysosomal activity of HaCaT cells, an immortal non-cancerous human keratinocyte cell line | 1.5–1.8 µM | [40] |
Country/Agency | Key Guidelines/Recommendations | Applicable Sector | Ref |
---|---|---|---|
Australia/University of Wollongong | Eliminating worker exposure to nanomaterials wherever possible throughout the manufacturing and handling of nanomaterials Substitution is unlikely to be an applicable hazard reduction method because the unique properties of nanomaterials are the key to their potential and are essentially driving their development In addition to taking into account the regulatory requirements and production imperatives, safe layouts must be designed to eliminate situations involving risks for the process and for the workers | Small scale laboratory | [41] |
India/DST | Nanoparticles are to be handled in a form that is not easily airborne, such as in solution or on a substrate. Use of respiratory air filters N100 or N95 is recommended Wear safety glasses, goggles, full facepiece respirator (Recommended when there is exposure to solvent or hot material) | Research laboratories Industries | [42] |
Canada/Concordia University | Awareness or safety training for students, staff, employees or anyone involved working with nanoparticles Development and application of standard operating procedures (SOPs) when working with specific nanoparticles | Laboratory facilities | [43] |
European Commission | Operations which involve the likely release of manufactured nanomaterials (MNMs) into the air should be performed in contained installations or in facilities that can be operated remotely from a protected area Processes where there is a potential for creating dusts or aerosols of MNMs should be carried out in areas with efficient local exhaust or extraction ventilation Adequate training and information should be provided to individual workers | Agriculture Electronic Medicines Medical technology Construction Automotive production Textiles Food processing Cosmetics | [44] |
WHO | The Guideline Development Group (GDG) recommends assigning hazard classes to all MNMs according to the Globally Harmonized System (GHS) of Classification and Labelling of Chemicals for use in safety data sheets The GDG recommends updating safety data sheets with MNM-specific hazard information, or indicating which toxicological end-points did not have adequate testing available | Industries | [45] |
FDA | Agglomeration and size distribution of nanomaterials under the conditions of toxicity testing and as expected in the final product In vitro and in vivo toxicological data on nanomaterial ingredients and their impurities, dermal penetration, potential inhalation, irritation (skin and eye) and sensitization studies, mutagenicity/genotoxicity studies. | Cosmetic industries | [46] |
Biosensors | Sensing Platform | Nanomaterials used in Biosensor Fabrication | Food Matrix | Pathogens/Toxins | Detection Limit | Analysis Time | Ref |
---|---|---|---|---|---|---|---|
Electrochemical biosensor | Screen printed carbon electrode | PLA-AuNPs (polylactic acid-stabilized gold nanoparticles) | Shellfish | Standard Vibrio parahemolyticus | 2.16 × 10−6 μM | NS | [103] |
Electrochemical DNA biosensor | Screen printed carbon electrode | PLA-AuNPs | Cockle | Standard Vibrio parahemolyticus | 5.3 × 10−12 | 10 min | [104] |
Paper-based biosensor | Gold electrode | Magnetic beads | Ground beef, Turkey sausage, Lettuce and Milk | Standard Staphylococcus aureus | 40 cfu/mL | 1 min | [105] |
Aptamer-based biosensor | Gold electrode | Cys-PAMAM (cystamine-poly(amido-amine) dendrimers) | Peanuts | Aflatoxin B1 | 0.40 nM | 10 min | [77] |
Electrochemical immunosensor | Graphite electrode | Carboxylic acid-MWCNT (multiwalled carbon nanotubes) | Milk | Standard Salmonella, Campylobacter and Escherichia coli | 400–800 cfu/mL | 30 min | [106] |
Electrochemical impedance Immunosensor | Glassy carbon electrode | AuNPs-MWCNT-PAMAM | Milk | Standard Salmonella typhimurium | 5.0 × 102 cfu/mL | NS | [107] |
Lytic phage-based magnetoelastic biosensors | Iron-Nickel Base Magnetic ribbon | Cr-Au layer (Chromium) | Spinach Leaves | Standard Staphylococcus aureus (MRSA) | 1.76 log cfu/25 mm2 surface of spinach | 30 min | [108] |
Amperometric immunosensing strips | Screen printed carbon electrode | AuNPs | Milk | Standard Escherichia coli O157:H7 | 50 cfu/strip in milk | 1 h | [54] |
Impedimetric biosensor | Gold disk electrodes | Pyrrole-3-carboxylic acid | Apple Juice | Standard Salmonellatyphimurium | 3 cfu/mL | 45 min | [102] |
Amperometry biosensor | Glassy carbon disc electrode | Polypyrrole | NA | Laboratory isolates of Listeria monocytogenes | 105 cfu/mL | 30 min | [109] |
Colorimetric aptasensor | Magnetic beads | NA (not applicable) | Salmon | Standard Vibrio parahemolyticus | 102–107 cfu/mL | NS | [110] |
Fluorescence immunoassay | CdTe quantum dots (Cadmium telluride) | NA | Whole milk | Standard Escherichia coli O157:H7 | 5 × 102–107 cfu/mL | NS | [111] |
Lateral flow biosensor | AuNPs (Gold nanoparticles) | NA | Milk | Standard Salmonella enteriditis | 101 cfu/mL | 10 min | [112] |
Mid-Infrared pathogen sensor | Magnetic nanoparticles | NA | Spinach and Milk | Standard bacterial cultures | 104–105 cfu/mL | 30 min | [113] |
Aptamer-based biosensor | AuNPs | NA | Milk powder | Laboratory isolates of Escherichia coli O157:H7 | 10 cfu/mL | 30 min | [114] |
Electrochemical biosensor | Gold electrode | NA | Lettuce | Laboratory isolates of Norovirus | 60 copies/mL | 1 h | [55] |
Gold nanoprobe | AuNPs | NA | NS (not specified) | Laboratory isolates of Staphylococcus aureus, Listeria monocytogenes, Salmonella spp. | 123 fg/μL | 30 min | [115] |
Fluorometric graphene oxide-based assay | Graphene oxide | NA | NA | Standard Salmonella enteriditis | 25 cfu/mL | NS | [116] |
Chemiluminescent aptasensor | Fe3O4 GO NPs (Graphene oxide/iron nanoparticles) | NA | NA | Standard pre killed Escherichia coli O157:H7 | 4.5 × 103 cfu/mL | 1 h | [117] |
Magnetoresistive-based immunoassay | Fe2O3 superparamagnetic particles | NA | NA | Standard Aflatoxins B1, Zearalenone | 50 pg/mL | 10 min | [118] |
Goldnanoprobe-nucleic acid sequence-based amplification | Au colloid | NA | NA | Standard Salmonella strains | 5 cfu/mL | 80 min | [119] |
Bioconjugate nanocapsules | AuNPs | NA | NA | Listeria monocytogenes | 8.1 × 105 cfu/ml and 2.6 × 107 cfu/mL | 5 min | [120] |
Silicon-based DNA biosensor | Silicon wafer | NA | NS | Laboratory isolates of Salmonella enteritidis | 1 ng/mL | NS | [85] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, H.; Kuča, K.; Bhatia, S.K.; Saini, K.; Kaushal, A.; Verma, R.; Bhalla, T.C.; Kumar, D. Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens. Sensors 2020, 20, 1966. https://doi.org/10.3390/s20071966
Kumar H, Kuča K, Bhatia SK, Saini K, Kaushal A, Verma R, Bhalla TC, Kumar D. Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens. Sensors. 2020; 20(7):1966. https://doi.org/10.3390/s20071966
Chicago/Turabian StyleKumar, Harsh, Kamil Kuča, Shashi Kant Bhatia, Kritika Saini, Ankur Kaushal, Rachna Verma, Tek Chand Bhalla, and Dinesh Kumar. 2020. "Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens" Sensors 20, no. 7: 1966. https://doi.org/10.3390/s20071966